Abstract:A malicious attack-resistant secure localization algorithm Evolutionary Location Algorithm with the Maximum Probability value (ELAMP) based on evolutionism is proposed. According to the maximum likelihood estimation probability model and the distribution of Received Signal Strength (RSS) standard deviation and the distance, a secure location model of ZigBee network is established. Furthermore, the evolutionary algorithm is designed to solve the model, and the convergence and the time complexity of the algorithm is analyzed. Experimental results show that the proposed algorithm has better positioning accuracy than the existing positioning algorithm when the proportion of malicious nodes is not more than 50%.
KRISHNA K L, MADHURI J, and ANRADHA K. A ZigBee based energy efficient environmental monitoring alerting and controlling system[C]. IEEE International Conference on Information Communication and Embedded Systems, Chennai, India, 2016: 1-7. doi: 10.1109/ICICES.2016. 7518849.
[2]
SHALABY M, SHOKAIR M, and MESSIHA N W. Performance enhancement of TOA localized wireless sensor networks[J]. Wireless Personal Communications, 2017, 95(4): 4667-4679. doi: 10.1007/s11277-017-4112-8.
[3]
MENG Wei, XIE Lihua, and XIAO Wendong. Optimal TDOA sensor-pair placement with uncertainty in source location[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9260-9271.
[4]
TOMIC S, BEKO M, and RUI D. Distributed RSS-AoA based localization with unknown transmit powers[J]. IEEE Wireless Communications Letters, 2016, 5(4): 392-395.
[5]
YIU S, DASHTI M, and CLAUSSEN H, et al. Wireless RSSI fingerprinting localization[J]. Signal Processing, 2017, 131: 235-244. doi: 10.1016/j.sigpro.2016.07.005.
YE Ayong, XU Li, and LIN Hui. Secure RSSI-based node positioning mechanism for wireless sensor networks[J]. Journal on Communications, 2012, 33(7): 135-142.
[7]
ZEYTINCI M B, SARI V, HARMANCI F K, et al. Location estimation using RSS measurements with unknown path loss exponents[J]. Eurasip Journal on Wireless Communications & Networking, 2013, 12(1): 178-192. doi: 10.1186/1687-1499- 2013-178.
[8]
SO Hingcheung and LIN Lanxin. Linear least squares approach for accurate received signal strength based source localization[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 4035-4040. doi: 10.1109/TSP.2011.2152400.
[9]
WANG Chang, QI Fei, SHI Guangming, et al. A linear combination-based weighted least square approach for target localization with noisy range measurements[J]. Signal Processing, 2014, 94(1): 202-211. doi: 10.1016/j.sigpro.2013. 06.005.
ZHOU Mu, PU Qiaolin, and TIAN Zengshan. Location fingerprint optimization based access point deployment in indoor WLAN localization[J]. Journal on Communications, 2015, 36(sl): 30-41. doi: 10.11959/j.issn.1000-436x.2015279.
[11]
LI Zang, TRAPPE W, ZHANG Yanyong, et al. Robust statistical methods for securing wireless localization in sensor networks[C]. IEEE International Symposium on Information Processing in Sensor Networks, Los Angeles, USA, 2005: 12. doi: 10.1109/IPSN.2005.1440903.
[12]
GARG R, VARNA A L, and WU M. An efficient gradient descent approach to secure localization in resource constrained wireless sensor networks[J]. IEEE Transactions on Information Forensics & Security, 2012, 7(2): 717-730. doi: 10.1109/TIFS.2012.2184094.
ZHAN Jie, LIU Hongli, LIU Dawei, et al. Research on secure DPC localization algorithm of WSN[J]. Journal on Communications, 2011, 32(12): 8-17. doi: 10.3969/j.issn. 1000-436X.2011.12.002.
[14]
NIRMALA M B and MANMJUNATHA A S. Enhanced voting based secure localization for wireless sensor networks [J]. International Journal of Computer Network and Information Security, 2015, 7(12): 52-59. doi: 10.5815/ijcnis. 2015.12.06.
YE Miao and WANG Yuping. Location estimation in wireless networks based on probabilistic model with variant variance and evolutionary algorithm[J]. Journal of Software, 2013, 24(4): 859-872. doi: 10.3724/SP.J.1001.2013.04255.
[17]
CHANG C H and LIAO W. A probabilistic model for relative location estimation in wireless sensor networks[J]. IEEE Communications Letters, 2009, 13(12): 893-895.
[18]
JOHN Galletly. Evolutionary algorithms in theory and practice[J]. Complexity, 1996, 2(8): 26-27.
[19]
RUDOLPH G. Finite Markov chain results in evolutionary computation: A tour d’horizon[J]. Fundamenta Informaticae, 1998, 35(1/4): 67-89.