|
|
Improved Gaussian Inverse Wishart Probability Hypothesis Density for Extended Target Tracking |
LI Wenjuan LÜ Jing GU Hong SU Weimin MA Chao YANG Jianchao |
(School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China) |
|
|
Abstract Assumed that extension and measurement number of Extended Targets (ET) are respectively modeled as ellipse and Poisson, a Gaussian Inverse Wishart Probability Hypothesis Density (GIW-PHD) filter can estimate kinematic and extension states. However, for the number of spatially close targets and the extensions of non-ellipsoidal and occluded targets, the results estimated by this filter are not accurate enough. In view of these problems, an improved GIW-PHD filter is proposed in this paper. Firstly, assumed that target extension is modeled as a reference ellipse of the same size, a modified Random Matrix (RM) method is obtained by devising a new scatter matrix. Then, combining the improved RM method with the ET-PHD based on a measurement number multi-Bernoulli model, the improved GIW-PHD filter is obtained. Simulated and experimental results show that, compared with the traditional GIW-PHD, the improved GIW-PHD filter can obtain more accurate estimates in target number and the extensions of ellipsoidal and non-ellipsoidal targets with large measurement number and extensions.
|
Received: 19 September 2017
Published: 11 April 2018
|
|
Fund:The National Natural Science Foundation of China (61471198, 61671246), The Natural Science Foundation of Jiangsu Province (BK20160847, BK20170855) |
Corresponding Authors:
GU Hong
E-mail: guhongjust@163.com
|
|
|
|
[1] |
GILHOLM K and SALMOND D. Spatial distribution model for tracking extended objects[J]. IET Radar, Sonar & Navigation, 2005, 152(5): 364-371. doi: 10.1049/ip-rsn: 20045114.
|
[2] |
MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA: Artech House, 2007: 193-360.
|
[3] |
VO B and MA W. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104. doi: 10.1109/TSP.2006. 881190.
|
[4] |
GRANSTROM K, LUNDQUIST C, and ORGUNER U. Extended target tracking using a Gaussian mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286. doi: 10.1109/TAES.2012. 6324703.
|
[5] |
李文娟, 顾红, 苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法[J]. 电子与信息学报, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT160372.
|
|
LI Wenjuan, GU Hong, and SU Weimin. Extended target tracking method based on multi-Bernoulli probability hypothesis density[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT 160372.
|
[6] |
KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059. doi: 10.1109/TAES.2008.4655362.
|
[7] |
FELDMANN M, FRANKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409-1420. doi: 10.1109/TSP.2010.2101064.
|
[8] |
BEARD M, REUTER S, GRANSTROM K, et al. Multiple extended target tracking with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2016, 64(7): 1638-1653. doi: 10.1109/TSP.2015.2505683.
|
[9] |
LAN Jian and LI Xiaorong. Tracking of maneuvering non- ellipsoidal extended object or target group using random matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2450-2463. doi: 10.1109/TSP.2014.2309561.
|
[10] |
GRANSTROM K, WILLETT C, and BAR-SHALOM Y. An extended target tracking model with multiple random matrices and unified kinematics[C]. International Conference on Information Fusion, Washington, USA, 2015: 1007-1014.
|
[11] |
GRANSTROM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671. doi: 10.1109/TSP.2012.2212888.
|
[12] |
LI Peng, GE Hongwei, YANG Jinlong, et al. Shape selection partitioning algorithm for Gaussian inverse Wishart probability hypothesis density filter for extended target tracking[J]. Radar, Sonar & Navigation, 2016, 10(9): 1041-1051. doi: 10.1049/iet-spr.2015.0503.
|
[13] |
VIVONE G, BRACA P, GRANSTROM K, et al. Multistatic Bayesian extended target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2626-2643. doi: 10.1109/TAES.2016.150724.
|
[14] |
VIVONE G and BRACA P. Joint probabilistic data association tracker for extended target tracking applied to X-band Marine radar data[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 1007-1019. doi: 10.1109/JOE.2015. 2503499.
|
[15] |
GRANSTROM K, NATALE A, BRACA P, et al. PHD extended target tracking using an incoherent X-band radar: preliminary real-world experimental results[C]. International Conference on Information Fusion, Salamanca, Spain, 2014: 1-8.
|
[16] |
GRANSTROM K, NATALE A, BRACA P, et al. Gamma Gaussian inverse Wishart probability hypothesis density for extended target tracking using X-band marine radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6617-6631. doi: 10.1109/TGRS.2015.2444794.
|
[17] |
GALATI G, LEONARDI M, CAVALLIN A, et al. Airport surveillance processing chain for high resolution radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1522-1533. doi: 10.1109/TAES.2010.5545207.
|
|
|
|