|
|
Research on Target Tracking Algorithm from Fisheye Camera Based on Compressive Sensing |
LI Yaqian JIA Lu LI Haibin ZHANG Wenming ZHANG Yansong |
(Key Laboratory of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China) |
|
|
Abstract For object detection in fisheye images which present serious distortion, an object tracking method is proposed to deal with scale variance, pose change and distortion. Firstly, gray feature and gradient feature are combined to obtain a high dimensional feature of the target, then reduce its dimensionality by averaging to obtain target’s compressive feature. According to fisheye imaging model, motion of object point is modeled, and range of motion of target is “predicted”. In order to adjust to scale variance, corner points are positioned respectively in a coarse to fine manner based on the block matching motion estimation, and the scale of compressed feature is changed along with scale change of object box. Experimental results show that the proposed algorithm is superior to other algorithms in the case of distortion, scale change, pose change and part occlusion.
|
Received: 21 July 2017
Published: 21 March 2018
|
|
Fund:The Natural Science Foundation of Hebei Province (F2015203212) |
Corresponding Authors:
LI Yaqian
E-mail: yaqianli@126.com
|
|
|
|
[1] |
吕丽军, 吴学伟. 鱼眼镜头初始结构的设计[J]. 光学学报, 2017, 37(2): 105-114.
|
|
LÜ Lijun and WU Xuewei. Design of initial structure of fisheye lens[J]. Acta Optica Sinica, 2017, 37(2): 105-114.
|
[2] |
URBAN S, LEITLOFF J, and HINZ S. Improved wide-angle, fisheye and omnidirectional camera calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108(8): 72-79. doi: 10.1016/j.isprsjprs.2015.06.005.
|
[3] |
PEREZ Y A, LOPEZ N G, and GUERRERO J. A novel hybrid camera system with depth and fisheye cameras[C]. International Conference on Pattern Recognition. Cancun, Mexico, 2017: 2789-2794. doi: 10.1109/ICPR.2016.7900058.
|
[4] |
WALLHOFF F, ZOBL M, and RIGOLL G. Face tracking in meeting room scenarios using omnidirectional views[C]. International Conference on Pattern Recognition, Washington, USA, 2004: 933-936. doi: 10.1109/ICPR.2004. 368.
|
[5] |
BAKSTEIN H and LEONARDIS A. Catadioptric image- based rendering for mobile robot localization[C]. International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007: 1-6. doi: 10.1109/ICCV.2007.4409199.
|
[6] |
CAO Z. Dynamic omni-directional vision localization using a beacon tracker based on particle filter[J]. The International Society for Optical Engineering, 2007, 6764(9): 13-28. doi: 10.1117/12.733862.
|
[7] |
BRITO J H, ANGST R, KOSER K, et al. Radial distortion self-calibration[C]. Computer Vision and Pattern Recognition, Washington, USA, 2013: 1368-1375. doi: 10.1109/CVPR. 2013.180.
|
[8] |
CHEN X, HUANG K, and TAN T. Object tracking across non-overlapping cameras using adaptive models[C]. International Conference on Computer Vision, Berlin, Germany, 2013: 464-477. doi: 10.1007/978-3-642-37484- 5_38.
|
[9] |
DEMONCEAUX C and VASSEUR P. Omnidirectional image processing using geodesic metric[C]. IEEE International Conference on Image Processing, Piscataway, USA, 2009: 221-224. doi: 10.1109/ICIP.2009.5414485.
|
[10] |
BAZIN J C, YOON K J, KWEON I, et al. Particle filter approach adapted to catadioptric images for target tracking application[C]. British Machine Vision Conference, London, UK, 2009: 1-11. doi: 10.5244/C.23.37.
|
[11] |
TAIANA M, GASPAR J, NASCIMENTO J, et al. 3D tracking by catadioptric vision based on particle filters[C]. RoboCup Robot Soccer World Cup XI, Atlanta, USA, 2007: 77-88. doi: 10.1007/978-3-540-68847-1_7.
|
[12] |
WANG X, LI W, WANG C, et al. An improved particle filter tracking algorithm for fisheye camera[C]. Chinese Control and Decision Conference, Yinchuan, China, 2010: 329-332. doi: 10.1109/CCDC.2016.7531004.
|
[13] |
WANG W, XU Y, WANG Y, et al. Effective weighted compressive tracking[C]. International Conference on Image and Graphics. Qingdao, China, 2013: 353-357. doi: 10.1109/ ICIG.2013.77.
|
[14] |
汪龙. 一种新的基于自适应窗口的压缩跟踪算法[J]. 计算机与数字工程, 2016, 44(9): 1700-1704. doi: 10.3969/j.issn. 1672-9722.2016.09.016.
|
|
WANG Long. A new compressive tracking algorithm based on adaptive window[J]. Computer and Digital Engineering, 2016, 44(9): 1700-1704. doi: 10.3969/j.issn.1672-9722.2016. 09.016.
|
[15] |
ZHANG K, ZHANG L, and YANG M H. Real-time compressive tracking[C]. European Conference on Computer Vision, Berlin, Germany, 2012: 864-877. doi: 10.1007/978-3- 642-33712-3_62.
|
[16] |
EICHENSEER A and KAUP A. A data set providing synthetic and real-world fisheye video sequences[C]. International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1541-1545. doi: 10.1109/ ICASSP.2016.7471935.
|
[17] |
ZHANG K, ZHANG L, and YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. doi: 10.1109/ TPAMI.2014.2315808.
|
[18] |
ZHANG K, ZHANG L, YANG M H, et al. Fast tracking via spatio-temporal context learning[C]. Computer Vision and Pattern Recognition, Oregon, USA, 2013: 1-15.
|
[19] |
POSSEGGER H, MAUTHNER T, and BISCHOF H. In defense of color-based model-free tracking[C]. Computer Vision and Pattern Recognition, Boston, USA, 2015: 2113-2120. doi: 10.1109/CVPR.2015.7298823.
|
[20] |
EVERINGHAM M, GOOL L, WILLIAMS C K, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. doi: 10.1007/s11263-009-0275-4.
|
|
|
|