|
|
Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis |
YANG Yizhong WANG Pengfei HU Xionglou WU Nengju |
(School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China) |
|
|
Abstract Since dynamic background may be erroneously detected as a moving object in the Robust Principal Component Analysis (RPCA) algorithm, a RPCA-based moving object detection optimization algorithm is proposed to improve it. After detected by the RPCA algorithm, the moving object will be separated from dynamic background according to the Gaussian distribution of dynamic background in the time domain and the difference of mean value and variance between dynamic background and moving object in the whole video stream. The results show that the algorithm can deal with dynamic background effectively and detect the moving objects well.
|
Received: 04 August 2017
Published: 14 March 2018
|
|
Fund:The National Natural Science Foundation of China (61401137, 61404043), The Key Science and Technology Project of Anhui Province (16030901007), The Fundamental Research Funds for the Central Universities (J2014HGXJ0083) |
Corresponding Authors:
YANG Yizhong
E-mail: yangyizhong@hfut.edu.cn
|
|
|
|
[1] |
KULCHANDANI J S and DANGARWALA K J. Moving object detection: review of recent research trends[C]. International Conference on Pervasive Computing, Pune, 2015: 1-5. doi: 10.1109/PERVASIVE.2015.7087138.
|
[2] |
LIANG R, YAN L, GAO P, et al. Aviation video moving- target detection with inter-frame difference[C]. International Congress on Image and Signal Processing, Yantai, 2010: 1494-1497. doi: 10.1109/CISP.2010.5646303.
|
[3] |
BARRON J L, FLEET D J, and BEAUCHEMIN S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12(1): 43-77. doi: 10.1007 /BF01420984.
|
[4] |
DENMAN S, FOOKES C, and SRIDHARAN S. Improved simultaneous computation of motion detection and optical flow for object tracking[C]. Digital Image Computing: Techniques and Applications, Washington, D.C., USA, 2009: 175-182. doi: 10.1109/DICTA.2009.35.
|
[5] |
周建英, 吴小培, 张超. 基于滑动窗的混合高斯模型运动目标检测算法[J]. 电子与信息学报, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449.
|
|
ZHOU Jianying, WU Xiaopei, and ZHANG Chao. A moving object detection method based on sliding window gaussian mixture model[J]. Journal of Electronics & Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449.
|
[6] |
STAUFFER Chris and GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]. Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999: 2246-2252. doi: 10.1109/CVPR.1999.784637.
|
[7] |
MITTAL A and PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation[C]. Computer Vision and Pattern Recognition, Washington, D.C., USA, 2004: 302-309. doi: 10.1109/CVPR.2004.164.
|
[8] |
JAVED S, OH S H, SOBRAL A, et al. Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints[C]. IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 930-938. doi: 10.1109/ ICCVW.2015.123.
|
[9] |
CANDES E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11:1-11:37. doi: 10.1145/1970392.1970395.
|
[10] |
ZHOU X, YANG C, and YU W. Moving object detection by detecting contiguous outliers in the low-rank representation [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(3): 597-610. doi: 10.1109/TPAMI.2012. 132.
|
[11] |
CAO X, LIANG Y, and GUO X. Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 1014-1027. doi: 10.1109/TCYB.2015.2419737.
|
[12] |
GAO Z, CHEONG L F, and WANG Y X. Block-sparse RPCA for salient motion detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36(10): 1975-1987. doi: 10.1109/TPAMI.2014.2314663.
|
[13] |
郭小路, 陶海红, 杨东. 联合图形约束和稳健主成分分析的地面动目标检测算法[J]. 电子与信息学报, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
|
|
GUO Xiaolu, TAO Haihong, and YANG Dong. Ground moving target detection based on robust principal component analysis and shape constraint[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
|
[14] |
蔡念, 周杨, 刘根, 等. 鲁棒主成分分析的运动目标检测综述[J]. 中国图象图形学报, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
|
|
CAI Nian, ZHOU Yang, LIU Gen, et al. Survey of robust principal component analysis methods for moving object detection[J]. Journal of Image and Graphics, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
|
[15] |
ELTANTAWY A and SHEHATA M S. Moving object detection from moving platforms using Lagrange multiplier [C]. IEEE International Conference on Image Processing, Quebec City, Q.C., Canada, 2015: 2586-2590. doi: 10.1109/ ICIP.2015.7351270.
|
[16] |
SOBRAL A, BOUWMANS T, and ZAHZAH E. Double- constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015: 1-6. doi: 10.1109/AVSS.2015.7301753.
|
[17] |
LIANG D, KANEKO S, HASHIMOTO M, et al. Co- occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes[J]. Pattern Recognition, 2015, 48(4): 1374-1390. doi: 10.1016/j.patcog. 2014.10.020.
|
[18] |
GRACIELA Ramírez-Alonso and MARIOI Chacón-Murguía. Auto-adaptive parallel SOM architecture with a modular analysis for dynamic object segmentation in videos[J]. Neurocomputing, 2016, 175: 990-1000. doi: 10.1016/j.neucom. 2015.04.118.
|
|
|
|