|
|
Gesture Recognition Method Combining Dense Convolutional with Spatial Transformer Networks |
MA Jie ZHANG Xiudan YANG Nan TIAN Yalei |
(School of Electronic & Information Engineering, Hebei University of Technology, Tianjin 300401, China) |
|
|
Abstract As an important milestone for the development of the artificial intelligence, gesture recognition enables the human-computer interaction and has received significantly growing research interest nowadays. However, the current technology for the gesture recognition has the low quality in the gesture rotation, translation and scaling. To solve the problem, a novel network structure named Densenet_V2 is proposed, and it is based on Dense Convolutional Networks (Densenet) and Spatial Transformer Networks (STN). Firstly, the input samples and feature maps are spatially transformed and aligned with the STN. Then the effective features of gestures are automatically extracted by using the Densenet. Finally, the linear classifier is adopted to classify the gestures. To prevent the network model from over-fitting the sample data set, the L2 regular term is involved into the loss function to achieve the weight decay when training the network. Experiments on the Marcel gesture database show that Densenet_V2 can improve the recognition rate of static deformation gestures.
|
Received: 29 June 2017
Published: 23 January 2018
|
|
Fund:The National Natural Science Foundation of China (61203245), The Natural Science Foundation of Hebei Province (F2012202027) |
Corresponding Authors:
MA Jie
E-mail: jma@hebut.edu.cn
|
|
|
|
[1] |
PIYUSH K, SIDDHARTH S R, and Anupam A. Hand data glove: A new generation real-time mouse for human- computer interaction[C]. International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, Jharkand, India, 2012: 750-755. doi: 10.1109/RAIT.2012. 6194548.
|
[2] |
WEI W and JING P. Hand segmentation using skin color and background information[C]. International Conference on Machine Learning and Cybernetics, Xi,an, China, 2012: 1487-1492. doi: 10.1109/ICMLC.2012.6359584.
|
[3] |
阮晓钢, 林佳, 于乃功, 等. 基于多线索的运动手部分割方法[J]. 电子与信息学报, 2017, 39(5): 1088-1095. doi: 10.11999/ JEIT160730.
|
|
RUAN Xiaogang, LIN Jia, YU Naigong, et al. Moving hand segmentation based on multi-cues[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1088-1095. doi: 10. 11999/JEIT160730.
|
[4] |
LIU Y, YIN Y, and ZHANG S. Hand gesture recognition based on HU moments in interaction of virtual reality[C]. International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, China, 2012: 145-148. doi: 10.1109/IHMSC.2012.42.
|
[5] |
DARDAS N H and GEORGANAS N D. Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(11): 3592-3607. doi: 10.1109/TIM.2011.2161140.
|
[6] |
杨学文, 冯志全, 黄忠柱, 等. 结合手势主方向和类- Hausdorff距离的手势识别[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
|
|
YANG Xuewen, FENG Zhiquan, HUANG Zhongzhu, et al. Gesture recognition based on combining main direction of gesture and Hausdorff-like distance[J]. Journal of Computer- Aided Design & Computer Graphics, 2016, 28(1): 75-81. doi: 10.3969/j.issn.1003-9775.2016.01.010.
|
[7] |
刘淑萍, 刘羽, 於俊, 等. 结合手指检测和HOG特征的分层静态手势识别[J]. 中国图象图形学报, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
|
|
LIU Shuping, LIU Yu, YU Jun, et al. Hierarchical static hand gesture recognition by combining finger detection and HOG features[J]. Journal of Image and Graphics, 2015, 20(6): 781-788. doi: 10.11834/jig.20150607.
|
[8] |
LIN H I, HSU M H, and CHEN W K. Human hand gesture recognition using a convolution neural network[C]. IEEE International Conference on Automation Science and Engineering, Taipei, China, 2014: 1038-1043. doi: 10.1109/ CoASE.2014.6899454.
|
[9] |
杜堃, 谭台哲. 复杂环境下通用的手势识别方法[J]. 计算机应用, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn.1001-9081. 2016.07.1965.
|
|
DU Kun and TAN Taizhe. General method for gesture recognition in complex environment[J]. Journal of Computer Applications, 2016, 36(7): 1965-1970. doi: 10.11772/j.issn. 1001-9081.2016.07.1965.
|
[10] |
PYO J, JI S, and YOU S. Depth-based hand gesture recognition using convolutional neural networks[C]. International Conference on Ubiquitous Robots and Ambient Intelligence, Xi,an, China, 2016: 225-227. doi: 10.1109/URAI. 2016.7625742.
|
[11] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791.
|
[12] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[OL]. http://arxiv. org/abs/1409.1556, 2014.
|
[13] |
HUANG G, LIU Z, WEINBERGER K Q, et al. Densely connected convolutional networks[OL]. http://arxiv.org/abs/ 1608.06993, 2016.
|
[14] |
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[OL]. https://arxiv.org/abs/ 1506.02025v3,2015.
|
[15] |
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
|
[16] |
GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Massachusetts, USA: MIT Press, 2016: 231-234.
|
|
|
|