|
|
Alternating Direction Method of Multipliers LDPC Penalized Decoding Algorithm Based on Variable Node Update |
HE Wenwu① XIA Qiaoqiao② ZOU Lian① |
①(School of Electronic Information, Wuhan University, Wuhan 430072, China)
②(College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China) |
|
|
Abstract The LDPC decoding algorithm with improved penalty function can improve the performance of decoding algorithm based on Alternating Direction Method of Multipliers (ADMM), but it has too many parameters to be optimized and the performance improvement is limited. For this problem, by comparing it with other decoding algorithms with penalty function, it is found that the difference between them is only the update rules of variable nodes in the decoding algorithm. Therefore, a new update method for variable nodes is proposed in this paper to reduce the number of parameters and improve the decoding performance. The simulation results show that, compared with the original decoding algorithm, the decoding algorithm in this paper reduces the parameters which need to be optimized, in addition, the average number of iterations of the algorithm is less and the algorithm can achieve about 0.1 dB performance improvement.
|
Received: 20 April 2017
Published: 08 November 2017
|
|
Fund:The National Natural Science Foundation of China (61501334), The Fundamental Research Funds for the Central Universities of CCNU (CCNU16A05028) |
Corresponding Authors:
XIA Qiaoqiao
E-mail: xqq2947559@163.com
|
|
|
|
[1] |
FELDMAN J, WAINWRIGHT M J, and KARGER D R. Using linear programming to decode binary linear codes[J]. IEEE Transactions on Information Theory, 2005, 51(3): 954-972. doi: 10.1109/TIT.2004.842696.
|
[2] |
CHILAPPAGARI S K, CHERTKOV M, and VASIC B. An efficient instanton search algorithm for LP decoding of LDPC codes over the BSC[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4417-4426. doi: 10.1109/TIT.2011. 2146670.
|
[3] |
BURSHTEIN D and GOLDENBERG I. Improved linear programming decoding of LDPC codes and bounds on the minimum and fractional distance[J]. IEEE Transactions on Information Theory, 2011, 57(11): 7386-7402. doi: 10.1109/ TIT.2011.2162224.
|
[4] |
FELDMAN J, MALKIN T, SERVEDIO R A, et al. LP decoding corrects a constant fraction of errors[J]. IEEE Transactions on Information Theory, 2007, 53(1): 82-89. doi: 10.1109/TIT.2006.887523.
|
[5] |
BAZZI L, GHAZI B, and URBANKE R L. Linear programming decoding of spatially coupled codes[J]. IEEE Transactions on Information Theory, 2014, 60(8): 4677-4698. doi: 10.1109/TIT.2014.2325903.
|
[6] |
BARMAN S, LIU Xishuo, DRAPER S C, et al. Decomposition methods for large scale LP decoding[J]. IEEE Transactions on Information Theory, 2013, 59(12): 7870-7886.
|
[7] |
WEI Haoyuan, JIAO Xiaopeng, and MU Jianjun. Reduced- complexity linear programming decoding based on ADMM for LDPC codes[J]. IEEE Communication Letters, 2015, 19(6): 909-912. doi: 10.1109/LCOMM.2015.2418261.
|
[8] |
JIAO Xiaopeng, MU Jianjun, HE Yucheng, et al. Efficient ADMM decoding of LDPC codes using look-up tables[J]. IEEE Transactions on Communications, 2017, 19(4): 271-285. doi: 10.1109/TCOMM.2017.2659733.
|
[9] |
DEBBABI I, GAL B L, KHOUJA N, et al. Fast converging ADMM penalized algorithm for LDPC decoding[J]. IEEE Communication Letters, 2016, 20(4): 648-651. doi: 10.1109 /LCOMM.2016.2531040.
|
[10] |
DEBBABI I, GAL B L, KHOUJA N, et al. Comparison of different schedulings for the ADMM based LDPC decoding[J]. International Symposium on Turbo Codes & Iterative Information Processing, 2016, 20(4): 51-55. doi: 10.1109/ ISTC.2016.7593075.
|
[11] |
LIU Xishuo and DRAPER S C. The ADMM penalized decoder for LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(6): 2966-2984. doi: 10.1109/ TIT.2016.2555847.
|
[12] |
LIU Xishuo. ADMM decoding of LDPC and multipermutation codes: from geometries to algorithms[D]. [Ph.D. dissertation], University of Wisconsin, 2015.
|
[13] |
JIAO Xiaopeng, WEI Haoyuan, and MU Jianjun. Improved ADMM penalized decoder for irregular low-density parity-check codes[J]. IEEE Communication Letters, 2015, 19(6): 913-916. doi: 10.1109/LCOMM.2015.2421445.
|
[14] |
WANG Biao, MU Jianjun, JIAO Xiaopeng, et al. Improved penalty functions of ADMM decoder for LDPC codes[J]. IEEE Communication Letters, 2016, 21(99): 234-237. doi: 10.1109/LCOMM.2016.2627575.
|
[15] |
WASSON M and DRAPER S C. Hardware based projection onto the parity polytope and probability simplex[C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2015: 1015-1020.
|
[16] |
ZHANG Xiaojie and SIEGEL P H. Adaptive cut generation algorithm for improved linear programming decoding of binary linear codes[J]. IEEE Transactions on Information Theory, 2012, 58(10): 6581-6594. doi: 10.1109/TIT.2012. 2204955.
|
[17] |
STORN R and PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328.
|
|
|
|