|
|
Study on Cooperative Spectrum Sensing Algorithm Based on Random Matrix Non-asymptotic Spectral Theory |
XU Weiyang LI Youjun XU Hongqian XIE Huiqiang |
(College of Communication Engineering, Chongqing University, Chongqing 400044, China) |
|
|
Abstract The non-asymptotic spectral theory of random matrix is applied to cooperative spectrum sensing, the maximum eigenvalue and the minimum eigenvalue of the sampled signal covariance matrix are analyzed and an Exact Maximum Minimum Eigenvalues Difference (EMMED) algorithm is proposed. For any given numbers of cooperative users K and sampling points N, the exact Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of the difference between the maximum and minimum eigenvalues are derived. Then, an accurate decision threshold is designed by using the distribution function. Theoretical analysis shows, the EMMED algorithm has the characteristics that the decision threshold is more accurate than the existing Asymptotic Maximum Minimum Eigenvalue Difference (AMMED) algorithm, without the characteristics of the main user signal and not affected by noise uncertainty. In addition, the simulation results show that the EMMED algorithm has better detection performance than the existing Exact Maximum Eigenvalue (EME) and EMMER algorithms in the real sensing environment with noisy uncertainty.
|
Received: 07 April 2017
Published: 01 November 2017
|
|
Fund:The National Natural Science Foundation of China (61201177) |
Corresponding Authors:
XU Weiyang
E-mail: weiyangxu@cqu.edu.cn
|
|
|
|
[1] |
OH S W, MA Y, PEH E, et al. Introduction to Cognitive Radio and Television White Space[M]. Hoboken, NJ,USA, John Wiley & Sons, Inc., 2016: 1-22. doi: 10.1002/ 9781119110491.ch1.
|
[2] |
KHATTAB A and BAYOUMI M A. An overview of IEEE standardization efforts for cognitive radio networks[C]. 2015 IEEE International Symposium on Circuits and Systems, Lisbon, 2015: 982-985. doi: 10.1109/ ISCAS.2015.7168800.
|
[3] |
SHARMA S K, BOGALE T E, CHATZINOTAS S, et al. Cognitive radio techniques under practical imperfections: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1858-1884. doi: 10.1109/COMST.2015.2452414.
|
[4] |
弥寅, 卢光跃. 基于特征值极限分布的合作频谱感知算法[J]. 通信学报, 2015, 36(1): 84-89. doi: 10.11959/j.issn.1000-436x. 2015010.
|
|
MI Yin and LU Guangyue. Cooperative spectrum sensing algorithm based on limiting eigenvalue distribution[J]. Journal on Communications, 2015, 36(1): 84-89. doi: 10.11959/j.issn.1000-436x.2015010.
|
[5] |
TAHERPOUR A, NASIRI-KENARI M, and GAZOR S. Multiple antenna spectrum sensing in cognitive radios[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 814-823. doi: 10.1109/TWC.2009.02.090385.
|
[6] |
CARDOSO L S, DEBBAH M, BIANCHI P, et al. Cooperative spectrum sensing using random matrix theory [C]. 2008 3rd International Symposium on Wireless Pervasive Computing, Santorini, 2008: 334-338. doi: 10.1109/ISWPC. 2008.4556225.
|
[7] |
ZENG Y, KOH C L, and LIANG Y C. Maximum eigenvalue detection: Theory and application[C]. 2008 IEEE International Conference on Communications, Beijing, 2008: 4160-4164. doi: 10.1109/ICC.2008.781.
|
[8] |
ZENG Y and LIANG Y C. Eigenvalue based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793. doi: 10.1109/ TCOMM.2009.06.070402.
|
[9] |
王颖喜, 卢光跃. 基于最大最小特征值之差的频谱感知技术研究[J]. 电子与信息学报, 2010, 32(11): 2571-2575. doi: 10.3724/SP.J.1146.2009.01434.
|
|
WANG Yingxi and LU Guangyue. DMM based spectrum sensing method for cognitive radio systems[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2571-2575. doi: 10.3724/SP.J.1146.2009.01434.
|
[10] |
ZANELLA A, CHIANI M, and WIN M Z. On the marginal distribution of the eigenvalues of Wishart matrices[J]. IEEE Transactions on Communications, 2009, 57(4): 1050-1060. doi: 10.1109/TCOMM.2009.04.070143.
|
[11] |
PENNA F, GARELLO R, FIGLIOLI D, et al. Exact non- asymptotic threshold for eigenvalue-based spectrum sensing[C]. 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Hannover, 2009: 1-5. doi: 10.1109/CROWNCOM.2009. 5189008.
|
[12] |
RATNARAJAH T, ZHONG C, KORTUN A, et al. Complex random matrices and multiple-antenna spectrum sensing[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, 2011: 3848-3851. doi: 10.1109/ICASSP.2011.5947191.
|
[13] |
CHATZINOTAS S, SHARMA S K, and OTTERSTEN B. Asymptotic analysis of eigenvalue-based blind Spectrum Sensing techniques[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, 2013: 4464-4468. doi: 10.1109/ICASSP.2013.6638504.
|
[14] |
RATNARAJAH T, VAILLANCOURT R, and ALVO M. Eigenvalues and condition numbers of complex random matrices[J]. SIAM Journal on Matrix Analysis & Applications, 2005, 26(2): 441-456. doi: 10.1137/S089547980342204X.
|
[15] |
CHIANI M. On the probability that all eigenvalues of Gaussian and Wishart random matrices lie within an interval[J]. IEEE Transactions on Information Theory, 2017, 63(7): 4521-4531. doi: 10.1109/TIT.2017.2694846.
|
[16] |
TRACY C A and WIDOM H. On orthogonal and symplectic matrix ensembles[J]. Communications in Mathematical Physics, 1996, 177(3): 727-754. doi: 10.1007/BF02099545.
|
[17] |
刘宁, 史浩山, 刘利平, 等. 基于随机矩阵的新型频谱盲感知方法[J]. 西北工业大学学报, 2016, 34(2): 262-267. doi: 10.3969/j.issn.1000-2758.2016.02.013.
|
|
LIU Ning, SHI Haoshan, LIU Liping, et al. A novel blind spectrum sensing algorithm based on random matrix[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 262-267. doi: 10.3969/j.issn.1000-2758.2016.02.013.
|
[18] |
CHIANI M. Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution[J]. Journal of Multivariate Analysis, 2014, 129: 69-81. doi: 10. /j.1016jmva.2014.04.002.
|
|
|
|