|
|
Time Synchronization Service Oriented Topology Aggregation Model of Space Information Network |
YU Baoguo BAO Yachuan WEI Haitao |
(State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang 050081, China)
(The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China) |
|
|
Abstract The trend of heterogeneous node and functional diversification is presented in the development of space information network. The synchronization of network nodes is the technical foundation of task coordination of network nodes. The characteristic of time synchronization service of space information network is analyzed in this paper and the error model of multi-hop relay time synchronization is given. The concept of clock offset relative invariance is proposed based on the characteristic of non-real-time time synchronization, and a novel space information network topology aggregation model is given for time synchronization service. Differing from normal communication-service-oriented network models, the constraint condition of the model establishment is the performance of node clock and the time synchronization link, and the characteristic and requirement of time synchronization service is concerned. Simulation of space information network time synchronization is made according to the model. In the process of multi-hop relay time synchronization based on the model, less routing and linking number is needed. The link resource consumption is reduced, and the time synchronization precision is improved.
|
Received: 29 March 2017
Published: 27 October 2017
|
|
Fund:The National Natural Science Foundation of China (91638203), The National Key Research and Development Program (2016YFB0502102) |
Corresponding Authors:
BAO Yachuan
E-mail: baoyachuan@126.com
|
|
|
|
[1] |
李德仁, 沈欣, 龚健雅, 等. 论我国空间信息网络的构建[J].武汉大学学报(信息科学版)[J]. 2015, 40(6): 711-716. doi: 10.13203/j.whugis20150021.
|
|
LI Deren, SHEN Xin, GONG Jianya, et al. On construction of China’s space information network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 711-716. doi: 10.13203/j.whugis20150021.
|
[2] |
PULLIAM J, ZAMBRZ Y, ARMARKER A, et al. TSAT network architecture[C]. Military Communications Conference 2008 IEEE. San Diego, CA, 2008: 1-7. doi: 10.1109/MILCOM.2008.4753508.
|
[3] |
COOK K L B. Current wideband MILSATCOM infrastructure and the future of bandwidth availability[J]. IEEE Aerospace and Electronic System Magazine, 2010, 25(12): 23-28. doi: 10.1109/MAES.2010.5638785.
|
[4] |
The Integrated Space Infrastructure for global Communications [OL]. http: //www. isi-initiative.org/.2008.
|
[5] |
张乃通, 赵康僆, 刘功亮. 对建设我国“天地一体化信息网络”的思考[J]. 中国电子科学研究院学报, 2015, 10(3): 223-230. doi: 10.3969/j.issn.1673-5692.2015.03.001.
|
|
ZHANG Naitong, ZHAO Kanglian, and LIU Gongliang. Thought on constructing the integrated space-terrestrial information network[J]. Journal of China Academy of Electronics and Information Technology, 2015, 10(3): 223-230. doi: 10.3969/j.issn.1673-5692.2015.03.001.
|
[6] |
李贺武, 吴茜, 徐恪, 等. 天地一体化网络研究进展与趋势[J]. 科技导报, 2016, 34(14): 95-106. doi: 10.3981/j.issn.1000-7857. 2016.14.011.
|
|
LI Hewu, WU Qian, XU Ke, et al. Progress and tendency of space and earth integrated network[J]. Science & Technology Review, 2016, 34(14): 95-106. doi: 10.3981/j.issn.1000-7857. 2016.14.011
|
[7] |
LIU R, SHENG M, LUI K, et al. An analytical framework for resource-limited small satellite networks[J]. IEEE Communications Letters, 2016, 20(2): 388-391. doi: 10.1109/ LCOMM.2015.2509993
|
[8] |
LI Yong, SONG Chaoming, JIN Depeng, et al. A dynamic graph optimization framework for multihop device-to-device communication underlaying cellular networks[J]. IEEE Wireless Communications, 2014, 21(5): 52-61. doi: 10.1109/ MWC.2014.6940433
|
[9] |
LIU R, SHENG M., LUI K, et al. Capacity analysis of two- layered LEO/MEO satellite networks[C]. 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, 2015: 1-5. doi: 10.1109/VTCSpring.2015.7145726.
|
[10] |
燕洪成, 张庆君, 孙勇. 空间延迟/中断容忍网络拥塞控制策略研究[J]. 通信学报, 2016, 37(1): 142-150. doi: 10.11959/j.issn.1000-436x.2016016.
|
|
YAN Hongcheng, ZHANG Qingjun, and SUN Yong. On congestion control strategy for space delay/disruption tolerant networks[J]. Journal on Communications, 2016, 37(1): 142-150. doi: 10.11959/j.issn.1000-436x.2016016.
|
[11] |
张威, 张更新, 边东明, 等. 基于分层自治域空间信息网络模型与拓扑控制算法[J]. 通信学报, 2016, 37(6): 94-105. doi: 10.11959/j.issn.1000-436x.2016120.
|
|
ZHANG Wei, ZHANG Gengxin, BIAN Dongming, et al. Network model and topology control algorithm based on hierarchical autonomous system in space information network[J]. Journal on Communications, 2016, 37(6): 94-105. doi: 10.11959/j.issn. 1000-436x.2016120.
|
[12] |
LI Hongyan and ZHANG Tao. A maximum flow algorithm based on storage time aggregated graph for delay-tolerant networks[OL]. Ad Hoc Networks(2017), http://dx.doi.org/ 10.1016/j.adhoc.2017.01.006.
|
[13] |
杨文可, 孟文东, 韩文标, 等. 欧洲空间原子钟组ACES与超高精度时频传递技术新进展[J]. 天文学进展, 2016, 34(2): 221-237. doi: 10.3969/j.issn.1000-8349.2016.02.06.
|
|
YANG Wenke, MENG Wendong, HAN Wenbiao, et al. Advances in atomic clock ensemble in space of europe and ultraprecise time and frequency transfer[J]. Progress in Astronomy, 2016, 34(2): 221-237. doi: 10.3969/j.issn.1000- 8349.2016.02.06.
|
[14] |
雷雨, 李变, 赵丹宁, 等. 一种高精度实时GPS卫星钟差预测算法[J]. 中国空间科学技术, 2014, 8(4): 39-45. doi: 10.3780/ j.issn.1000-758X.2014.04.006.
|
|
LEI Yu, LI Bian, ZHAO Danning, et al. Real-time prediction algorithm for high-accuracy GPS satellite clock offset[J]. Chinese Space Science and Technology, 2014, 8(4): 39-45. doi: 10.3780/j.issn.1000-758X.2014.04.006.
|
[15] |
杨富春, 李素英, 李斌, 等. 四种模型在卫星钟差短期预报中的应用研究[J]. 水利与建筑工程学报, 2014, 12(6): 199-204. doi: 10.3969/j.issn.1672-1144.2014.06.040.
|
|
YANG Fuchun, LI Suying, LI Bin, et al. Research on the application of four models used in the short-term prediction of satellite clock errors[J]. Journal of Water Resources and Architectural Engineering, 2014, 12(6): 199-204. doi: 10.3969 /j.issn.1672-1144.2014.06.040.
|
|
|
|