|
|
Clutter Cancellation for Airborne Passive Radar Based on Frequency-domain Block RDS-LMS Algorithm |
YANG Pengcheng①②③ LÜ Xiaode①② CHAI Zhihai①②③ ZHANG Dan①②③ YUE Qi①②③ YANG Jingmao①②③ |
①(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)
②(National Key Laboratory of Science and Technology on Microwave Imaging, Beijing 100190, China)
③(University of Chinese Academy of Sciences, Beijing 100049, China) |
|
|
Abstract A frequency-domain block Range-Doppler-Space Least-Mean-Square (RDS-LMS) algorithm is proposed for the cancellation of the Doppler spread of clutter for airborne passive radar. To avoid the cancellation of targets in the clutter Doppler band with the cancellation of clutter, this algorithm uses the spatial dependence of the clutter Doppler frequency and cancels clutter along the clutter ridge. With the frequency-domain block implementation, the iteration of adaptive processing is reduced and FFT can be employed. Hence, the computational load is reduced. Simulation results based on experimental data show that the proposed algorithm is able to cancel clutter effectively and more importantly it has slight influence on targets in clutter Doppler band. For example, for targets with radial velocity greater than 10 m/s, signal-to-noise ratio (SNR) loss is within 1 dB. Computational complexity analyses show that the frequency-domain block implementation reduces the computational load 42 times and according to the real-time implemented Frequency-Domain Block LMS (FBLMS) algorithm in ground based passive radar, the proposed algorithm needs 771 ms to process 1 s data with the help of parallel processing of Graphic Processing Unit (GPU) and can satisfy the need for the real-time implementation of airborne passive radar clutter cancellation.
|
Received: 02 March 2017
Published: 14 August 2017
|
|
Corresponding Authors:
YANG Pengcheng
E-mail: yang_peng_cheng@126.com
|
|
|
|
[1] |
KULPA K, MALANOWSKI M, SAMCZYNSKI P, et al. The concept of airborne passive radar[C]. IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), Kiev, Ukraine, 2011: 267-270. doi: 10.1109/ MRRS.2011.6053651.
|
[2] |
BROWN J, WOODBRIDGE K, GRIFFITHS H, et al. Passive bistatic radar experiments from an airborne platform [J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(11): 50-55. doi: 10.1109/MAES. 2012.6380826.
|
[3] |
杨鹏程, 吕晓德, 张丹, 等. 机载外辐射源雷达空时处理中距离徙动校正算法研究[J]. 电子与信息学报, 2016, 38(12): 3230-3237. doi: 10.11999/JEIT160954.
|
|
YANG P C, LU X D, ZHANG D, et al. Research on range migration compensation algorithm in space time processing for airborne passive radar[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3230-3237. doi: 10. 11999/JEIT160954.
|
[4] |
WU Q, ZHANG Y D, AMIN M G, et al. Space-time adaptive processing and motion parameter estimation in multistatic passive radar using sparse bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 944-957. doi: 10.1109/ TGRS.2015.2470518.
|
[5] |
GROMEK D, KULPA K, and SAMCZYNSKI P. Experimental results of passive SAR imaging using DVB-T illuminators of opportunity[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1124-1132. doi: 10.1109/LGRS. 2016.2571901.
|
[6] |
KLEMM R. 空时自适应处理原理[M]. 北京: 高等教育出版社, 2009: 103-133.
|
[7] |
TAN D K P, LESTURGIE M, SUN H, et al. Signal analysis of airborne passive radar using transmissions of opportunity[C]. IEEE CIE International Conference on Radar, Chengdu, China, 2011: 169-172.
|
[8] |
TAN D K P, LESTURGIE M, SUN H, et al. Space-time interference analysis and suppression for airborne passive radar using transmissions of opportunity[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 142-152. doi: 10.1049/iet-rsn. 2013.0190.
|
[9] |
万显荣, 梁龙, 但阳鹏, 等. 移动平台外辐射源雷达实验研究[J]. 电波科学学报, 2015, 30(2): 383-390. doi: 10.13443/j. cjors.2014042301.
|
|
WAN X R, LIANG L, DAN Y P, et al. Experimental research of passive radar on moving platform[J]. Chinese Journal of Radio Science, 2015, 30(2): 383-390. doi: 10.13443/j.cjors. 2014042301.
|
[10] |
COLONE F, O'HAGAN D, LOMBARDO P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 698-722. doi: 10.1109/TAES.2009. 5089551.
|
[11] |
杨鹏程, 吕晓德, 刘宇, 等. 基于波束域分块RDLMS的机载外辐射源雷达杂波对消算法[J]. 电子与信息学报, 2017, 39(4): 960-967. doi: 10.11999/JEIT160595.
|
|
YANG P C, LU X D, LIU Y, et al. Clutter cancellation algorithm for airborne passive radar based on block RDLMS in beam domain[J]. Journal of Electronics & Information Technology, 2017, 39(4): 960-967. doi: 10.11999/JEIT160595.
|
[12] |
杨鹏程, 吕晓德, 刘宇, 等. 基于RDNLMS的机载外辐射源雷达杂波对消[J]. 电子与信息学报, 2016, 38(10): 2488-2494. doi: 10.11999/JEIT151310.
|
|
YANG P C, LU X D, LIU Y, et al. Clutter cancellation for airborne passive radar based on RDNLMS[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2488-2494. doi: 10.11999/JEIT151310.
|
[13] |
赵耀东. UHF波段无源雷达信号处理算法研究[D]. [博士论文], 北京: 中国科学院大学, 2013.
|
|
ZHAO Y D. Research on signal processing algorithm of passive radar based on the UHF band illuminators[D]. [Ph.D. dissertation], Beijing: University of Chinese Academy of Sciences, 2013.
|
[14] |
FARHANG-BOROUJENY B and CHAN K S. Analysis of the frequency-domain block LMS algorithm[J]. IEEE Transactions on Signal Processing, 2000, 48(8): 2332-2342. doi: 10.1109/78.852014.
|
[15] |
李晓波, 关欣, 仲利华, 等. 基于GPU的外辐射源雷达信号处理实时实现方法[J]. 系统工程与电子技术, 2014, 36(11): 2192-2200. doi: 10.3969/j.issn.1001-506X.2014. 11.13.
|
|
LI X B, GUAN X, ZHONG L H, et al. Real-time implementation of signal processing for passive radars based on GPU[J]. Systems Engineering and Electronics, 2014, 36(11): 2192-2200. doi: 10.3969/j.issn.1001-506X. 2014.11.13.
|
[16] |
数字电视地面广播传输系统帧结构, 信道编码和调制[S]. 中国国家标准. 2006.
|
|
|
|