|
|
Reduced-dimension Root-MUSIC Algorithm Based on Spectral Factorization |
YAN Fenggang① LIU Qiuchen① SHAO Duo② WANG Jun① WANG Kun③ JIN Ming① |
①(Harbin Institute of Technology at Weihai, Weihai 264209, China)
②(Xidian University, Xi’an 710071, China)
③(63891 Unit of Army, PLA, Luoyang 471023, China) |
|
|
Abstract The Root MUltiple SIgnal Classification (Root-MUSIC) algorithm uses polynomial rooting instead of spectral search to reduce the computational complexity of Direction-Of-Arrival (DOA) estimation. However, when large numbers of sensors are exploited, this algorithm is still time-consuming. To further reduce the complexity, a novel Reduced-Dimension Root-MUSIC (RD-Root-MUSIC) algorithm based on spectral factorization is proposed, in which the dimension of polynomial involved in the rooting step is efficiently reduced to half. A companion matrix whose eigenvalues correspond to the roots of the reduced-dimension polynomial is further constructed, and the Arnoldi iteration is finally used to calculate only the L largest eigenvalues containing DOA information, where L is the number of signals. Simulation results show that RD-Root-MUSIC has a similar performance with much lower complexity as compared to Root-MUSIC.
|
Received: 09 January 2017
Published: 27 June 2017
|
|
Fund:The National Natural Science Foundation of China (61501142), China Postdoctoral Science Foundation (2015M571414), Science and Technology Program of Weihai and Project Supported by Discipline Construction Guiding Foundation in Harbin Institute of Technology (Weihai) (WH20160107), The Fundamental Research Funds for the Central Universities (HIT.NSRIF.201725) |
Corresponding Authors:
WANG Jun
E-mail: hitwangjun@126.com
|
|
|
|
[1] |
LIU Lutao and LIU Huan. Joint estimation of DOA and TDOA of multiple reflections in mobile communications[J]. IEEE Access, 2016, 4: 3815-3823. doi: 10.1109/ACCESS.2016. 2584088.
|
[2] |
WANG Xianpeng, WANG Luyun, LI Xiumei, et al. An efficient sparse representation algorithm for DOA estimation in MIMO radar system[C]. 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 2016: 1-4.
|
[3] |
LEVANDA R and LESHEM A. Adaptive selective sidelobe canceller beamformer with applications to interference mitigation in radio astronomy[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5063-5074. doi: 10.1109/ TSP.2013.2274960.
|
[4] |
GUO Yan, GUO Li, and LI Ning. Method on fast DOA estimation of moving nodes in ad-hoc network[C]. IEEE International Symposium on Communications and Information Technology, Beijing, China, 2005: 1169-1172.
|
[5] |
SAUCAN A A, CHONAVEL T, SINTES C, et al. CPHD- DOA tracking of multiple extended sonar targets in impulsive environments[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1147-1160. doi: 10.1109/TSP.2015.2504349.
|
[6] |
SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas & Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
|
[7] |
YAN Fenggang, JIN Ming, LIU Shuai, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548-1560. doi: 10.1109/TSP.2014.2298384.
|
[8] |
BASIKOLO T and ARAI H. APRD-MUSIC algorithm DOA estimation for reactance based uniform circular array[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4415-4422. doi: 10.1109/TAP.2016.2593738.
|
[9] |
闫锋刚, 张薇, 金铭.求根MUSIC初值设置和更新算法[J]. 哈尔滨工业大学学报, 2015, 47(3): 88-92. doi: 10.11918/j.issn. 0367-6234.2015.03.015.
|
|
YAN Fenggang, ZHANG Wei, and JIN Ming. A new method for setting and updating the initiation of root-MUSIC[J]. Journal of Harbin Institute of Technology, 2015, 47(3): 88-92. doi: 10.11918/j.issn.0367-6234.2015.03.015.
|
[10] |
YAN Fenggang, SHEN Yi, and JIN Ming. Fast DOA estimation based on a split subspace decomposition on the array covariance matrix[J]. Signal Processing, 2015, 115(C): 1-8. doi: 10.1016/j.sigpro.2015.03.008.
|
[11] |
RUBSAMEN M and GERSHMAN A B. Direction-of-arrival estimation for nonuniform sensor arrays: From manifold separation to Fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 588-599. doi: 10.1109/TSP.2008.2008560.
|
[12] |
QIAN Cheng, HUANG Lei, and SO H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144. doi: 10.1109/LSP.2013.2294676.
|
[13] |
REN Q S and WILLIS A J. Fast root MUSIC algorithm[J]. Electronics Letters, 1997, 33(6): 450-451. doi: 10.1049/el: 19970272.
|
[14] |
ZHANG Xiaofei, XU Lingyun, XU Lei, et al. Direction Of Departure (DOD) and Direction of Arrival (DOA) estimation in MIMO radar with reduced dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): 1161-1163. doi: 10.1109/lcomm.2010.1026.101581.
|
[15] |
王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京, 清华大学出版社, 2004: 132-136.
|
|
WANG Yongliang, CHEN Hui, PENG Yingning, et al. Theory and Algorithm of Spatial Spectrum Estimation[M]. Peking, Tsinghua University Press, 2004: 132-136.
|
[16] |
闫锋刚, 齐晓辉, 刘帅, 等. 基于子空间旋转变换的低复杂度波达角估计算法[J]. 电子与信息学报, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539.
|
|
YAN Fenggang, QI Xiaohui, LIU Shuai, et al. Low- complexity DOA estimation via subspace rotation technique [J]. Journal of Electronics & Information Technology, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539.
|
[17] |
SAYED A H and KAILATH T. A survey of spectral factorization methods[J]. Numerical Linear Algebra with Applications, 2001, 8(8): 467-496. doi: 10.1002/nla.250.
|
[18] |
GOLUB G H and LOAN V C F. Matrix computations[J]. Mathematical Gazette, 1996, 47(5 Series II): 392-396.
|
[19] |
张贤达, 等. 矩阵分析与应用[M]. 北京:清华大学出版社, 2004: 518-519.
|
|
ZHANG Xianda, et al. Matrix Analysis and Applications[M]. Peking: Tsinghua University Press, 2004: 518-519.
|
|
|
|