|
|
Concurrent Blind Equalization Algorithm Based on Probability Density Function Matching and Fractional Lower Order Moments |
MA Jitong① QIU Tianshuang① LI Rong② XIA Nan② LI Jingchun② |
①(Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China)
②(State Radio Monitoring Center, Beijing 100037, China) |
|
|
Abstract In order to improve the performance of the blind equalizer under impulsive noise environments, a novel concurrent blind equalization algorithm based on probability density function matching and fractional lower order moments is presented. This algorithm uses the idea of probability density function matching at the beginning, and makes full use of the advantage of its fast convergence speed. In order to solve the problems of the phase information loss and incapability of suppressing impulse noise, this paper combines the fractional lower order moments of the decision signal in parallel as the cost function to update the weight coefficients of the blind equalizer. The convergence speed and convergence precision is further improved. The simulation experiments results show that the algorithm can effectively solve the problem of phase rotation and better suppress the impulse noise. Moreover, the algorithm has fast convergence speed, small steady-state error and strong robustness.
|
Received: 15 August 2016
Published: 11 May 2017
|
|
Fund: The National Natural Science Foundation of China (61671105, 61139001, 61172108, 81241059) |
Corresponding Authors:
QIU Tianshuang
E-mail: qiutsh@dlut.edu.cn
|
|
|
|
[1] |
LIM J. Mixture filtering approaches to blind equalization based on estimation of time-varying and multi-path channels [J]. Journal of Communications & Networks, 2016, 18(1): 8-18. doi: 10.1109/JCN.2016.000004.
|
[2] |
SILVA M T M and ARENAS-GARCIA J. A soft-switching blind equalization scheme via convex combination of adaptive filters[J]. IEEE Transactions on Signal Processing, 2013, 61(5): 1171-1182. doi: 10.1109/TSP.2012.2236835.
|
[3] |
YU C and XIE L. On recursive blind equalization in sensor networks[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 662-672. doi: 10.1109/TSP.2014.2376884.
|
[4] |
SCARANO G, PETRONI A, BIAGI M, et al. Second-order statistics driven LMS blind fractionally spaced channel equalization[J]. IEEE Signal Processing Letters, 2017, 24(2): 161-165. doi: 10.1109/LSP.2016.2635034.
|
[5] |
邱天爽, 戚寅哲. 稳定分布噪声下基于粒子滤波的双站伪多普勒定位方法[J]. 通信学报, 2016, 37(1): 28-34. doi: 10.11959 /J.ISSN.1000-436x.2016004.
|
|
QIU Tianshuang and QI Yinzhe. Dual-station pseudo- Doppler localization method based on particle filtering with stable distribution noise[J]. Journal on Communications, 2016, 37(1): 28-34. doi: 10.11959/J.ISSN.1000-436x.2016004.
|
[6] |
LUAN S, QIU T, ZHU Y, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120(4): 503-508. doi: 10. 1016/J.SIGPRO.2015.09.023.
|
[7] |
PELEKANAKIS K and CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183-3195. doi: 10.1109/TWC.2014.042314.131432.
|
[8] |
RUPI M, TSAKALIDES P, RE E D, et al. Constant modulus blind equalization based on fractional lower-order statistics[J]. Signal Processing, 2004, 84(5): 881-894. doi: 10.1016/J. SIGPRO.2004.01.006.
|
[9] |
TANG Hong, QIU Tianshuang, and LI Ting. Capture properties of the generalized CMA in alpha-stable noise environment[J]. Wireless Personal Communications, 2009, 49(1): 439-442. doi: 10.1007/S11277-008-9560-8.
|
[10] |
LI S and QIU T S. Tracking performance analysis of fractional lower order constant modulus algorithm[J]. Electronics Letters, 2009, 45(11): 545-546. doi: 10.1049/EL. 2009.0561.
|
[11] |
郭莹, 邱天爽, 唐洪,等. 脉冲噪声环境下的恒模盲均衡算法[J]. 通信学报, 2009, 30(4): 35-40. doi: 10.3321/J.ISSN:1000- 436X.2009.04.007.
|
|
GUO Ying, QIU Tianshuang, TANG Hong, et al. Constant modulus algorithm for blind equalization under impulsive noise environments[J]. Journal on Communications, 2009, 30(4): 35-40. doi: 10.3321/J.ISSN:1000-436X.2009.04.007.
|
[12] |
LI Sen, WANG Yan, and LIN Bin. Concurrent blind channel equalization in impulsive noise environments[J]. Chinese Journal of Electronics, 2013, 22(4): 741-746.
|
[13] |
LAZARO M, SANTAMARIA I, ERDOGMUS D, et al. Stochastic blind equalization based on PDF fitting using Parzen estimator[J]. IEEE Transactions on Signal Processing, 2005, 53(2): 696-704. doi: 10.1109/TSP.2004.840767.
|
[14] |
KIM N, BYUN H G, YOU Y H, et al. Blind signal processing for impulsive noise channels[J]. Journal of Communications & Networks, 2012, 14(1): 27-33. doi: 10.1109/JCN.2012. 6184548.
|
[15] |
LIU H, LI Y, ZHOU Y, et al. Impulsive noise suppression in the case of frequency estimation by exploring signal sparsity [J]. Digital Signal Processing, 2016, 57(3): 34-45. doi: 10.1016 /J.DSP.2016.06.012.
|
[16] |
郭业才, 龚秀丽, 张艳萍. 基于样条函数Renyi熵的时间分集小波盲均衡算法[J]. 电子与信息学报, 2011, 33(9): 2050-2055. doi: 10.3724/SP.J.1146.2011.00110.
|
|
GUO Yecai, GONG Xiuli, and ZHANG Yanping. Spline function Renyi entropy based tme diversity wavelet blind equalization algorithm[J]. Journal of Elestronics & Information Technology, 2011, 33(9): 2050-2055. doi: 10.3724 /SP.J.1146.2011.00110.
|
[17] |
ALNAFFOURI T Y, DAHMAN A A, SOHAIL M S, et al. Low complexity blind equalization for OFDM systems with general constellations[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6395-6407. doi: 10.1109/TSP.2012. 2218808.
|
|
|
|