|
|
An Improved HARQ Scheme with Polar Codes |
ZHU Hongbin①②③ DAI Shengchen②③ KANG Kai④ QIAN Hua①④ |
①(School of Information and Technology, ShanghaiTech University, Shanghai 201210, China)
②(Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)
③(Shanghai Research Center for Wireless Communications, Shanghai 201210, China)
④(Shanghai Advanced Research Institude, Chinese Academy of Sciences, Shanghai 201210, China) |
|
|
Abstract Hybrid Automatic Repeat reQuest (HARQ) scheme with polar codes is suitable for short packets applied to Internet of Things (IoT). Existing HARQ scheme with Chase Combing (HARQ-CC) provides combining gain without coding gain. The HARQ scheme with Incremental Redundancy (HARQ-IR) achieves better performance with significantly high complexity, which is unacceptable for IoT applications. In this paper, an improved HARQ scheme with polar codes is proposed. The proposed coding scheme achieves 0.7 dB gain for code rate R=1/2 and retransmission time T=1 compared with HARQ-CC scheme and the performance of this scheme is approaching the polar codes with rate R=1/4. The encoding and decoding complexity of the proposed scheme is reduced by about 50% compared with the polar codes with rate R=1/4. Simulation results validate the effectiveness of this scheme.
|
Received: 11 July 2016
Published: 07 March 2017
|
|
Fund: The National Natural Science Foundation of China Key Program (61231009), The National 863 Program of China (2015AA011709), The Science and Technology Commission Foundation of Shanghai (15511102602) |
Corresponding Authors:
QIAN Hua
E-mail: qianh@sari.ac.cn
|
|
|
|
[1] |
GUBBI J, BUYYA R, and MARUSIC S. Internet of Things (IoT): A vision, architectural elements, and future directions [J]. Future Generation Computer Systems, 2013, 29(7): 1645-1660. doi: 10.1016/j.future.2013.01.010.
|
[2] |
ARIKAN E and TELATAR E. On the rate of channel polarization[C]. Proceedings of IEEE International Symposium on Information Theory, Seoul, Korea, 2009, 1493-1495.
|
[3] |
KORADA S B, SASOGLU E, and URBANKE R. Polar codes: Characterization of exponent, bounds, and constructions[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6253-6264. doi: 10.1109/TIT.2010.2080990.
|
[4] |
ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary- input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073. doi: 10.1109/ TIT.2009.2021379.
|
[5] |
NIU K and CHEN K. CRC-aided decoding of polar codes[J]. IEEE Communications Letters, 2012, 16(10): 1668-1671. doi: 10.1109/LCOMM.2012.090312.121501.
|
[6] |
TAL I and VARDY A. List decoding of polar codes[C]. Proceedings of IEEE International Symposium on Information Theory Proceedings, Saint-Petersburg, Russia, 2011: 1-5.
|
[7] |
NIU K, CHEN K, LIN J R, et al. Polar codes: Primary concepts and practical decoding algorithms[J]. IEEE Communications Magazine, 2014, 52(7): 192-203. doi: 10. 1109/MCOM.2014.6852102.
|
[8] |
FRENGER P, PARKVALL S, and DAHLMAN E. Performance comparison of HARQ with chase combining and incremental redundancy for HSDPA[C]. Proceedings of IEEE Vehicular Technology Conference, Atlantic City, USA, 2001: 1829-1833.
|
[9] |
CHEN K, NIU K, HE Z Q, et al. Polar coded HARQ scheme with Chase combining[C]. Proceedings of IEEE Wireless Communications and Networking Conference, Istanbul, Turkey, 2014: 474-479.
|
[10] |
CHEN K, NIU K, and LIN J R. A Hybrid ARQ scheme based on polar codes[J]. IEEE Communications Letters, 2013, 17(10): 1996-1999. doi: 10.1109/LCOMM.2013.090213. 131670.
|
[11] |
SABER H and MARSLAND I. An incremental redundancy hybird ARQ via puncturing and extending of polar codes[J]. IEEE Transactions on Communications, 2015, 63(11): 3964-3973. doi: 10.1109/TCOMM.2015.2477082.
|
[12] |
GAL B L, LEROUX C, and JEGO C. Multi-gb/s software decoding of polar codes[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 349-359. doi: 10.1109/TSP.2014. 2371781.
|
[13] |
RAYMOND A J and GROSS W J. A scalable successive- cancellation decoder for polar codes[J]. IEEE Transactions on Signal Processing, 2014, 62(20): 5339-5347. doi: 10.1109/TSP. 2014.2347262.
|
[14] |
ZHANG L, ZHANG Z Y, WANG X B, et al. On the puncturing patterns for punctured polar codes[C]. IEEE International Symposium on Information Theory, Honolulu, USA, 2014: 121-125.
|
[15] |
SHIN D M, LIM S C, and YANG K. Design of length- compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593-2599. doi: 10.1109/TCOMM.2013.052013. 120543.
|
[16] |
TRIFONOV P. Efficient design and decoding of polar codes[J]. IEEE Transactions on Communications, 2012, 60(11): 3221-3227. doi: 10.1109/TCOMM.2012.081512. 110872.
|
[17] |
CHUNG S Y, RICHARDSON T J, and URBSNKE R L. Analysis of sumproduct decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657-670. doi: 10.1109 /18.910580.
|
[18] |
MORI R and TANAKA T. Performance of polar codes with the construction using density evolution[J]. IEEE Communications Letters, 2009, 13(7): 519-521. doi: 10.1109/ LCOMM.2009.090428.
|
|
|
|