|
|
Analytical Processing Method of Big Surveillance Video Data Based on Smart Monitoring Cameras |
SHAO Zhenfeng①③ CAI Jiajun①③ WANG Zhongyuan④ MA Zhaoting② |
①(State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)
②(Chinese Academy of Surveying and Mapping, Beijing 100830, China)
③(Collaborative Innovation Center for Geospatial Technology, Wuhan 430079, China)
④(National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan 430079, China) |
|
|
Abstract As an important part in the security and protection system of cities, smart monitoring cameras which are equipped with intelligent video analytics ability can monitor in different scenes and pre-alarm abnormal behaviors or events. Nevertheless, with the growing number of smart monitoring cameras, the challenges to analytics, storage and retrieval of massive surveillance video data need to be solved in the big data era. This paper proposes an intelligent processing method which makes full use of smart cameras to big surveillance video data. The method consists of three parts: the intelligent pre-alarming for abnormal events, smart storage for surveillance video and rapid retrieval for evidence videos, which aim to improve the utilization efficiency of surveillance video data. Experimental results prove that the proposed approach can reliably pre-alarm abnormal events, efficiently reduce storage space of recorded video and significantly improve the evidence video retrieval rates associated with specific suspects.
|
Received: 07 July 2016
Published: 09 February 2017
|
|
Fund: The Fundamental Research Funds for the Central Universities (2042016kf0179, 2042016kf1019, 2042016 gf0033), The Guangzhou Science and Technology Project (2016- 04020070), The Special Funds Project on Public Welfare Industry Research of Surveying and Mapping Geographic Information (201512027), The Natural Science Fund of Hubei Province (2015CFB406), The Applied Basic Research Program of Wuhan City (2016010101010025) |
Corresponding Authors:
WANG Zhongyuan
E-mail: wzy_hope@163.com
|
|
|
|
[1] |
DBOUK M, MCHEICK H, and SBEITY I. CityPro; an integrated city-protection collaborative platform[J]. Procedia Computer Science, 2014, 37: 72-79. doi: 10.1016/j.procs.2014. 08.014
|
[2] |
黄凯奇, 陈晓棠, 康运锋, 等. 智能视频监控技术综述[J]. 计算机学报, 2015, 38(6): 1093-1118. doi: 10.11897/SP.J.1016. 2015.01093.
|
|
HUANG Kaiqi, CHEN Xiaotang, KANG Yunfeng, et al. Intelligent visual surveillance: A review[J]. Chinese Journal of Computers, 2015, 38(6): 1093-1118. doi: 10.11897/SP.J.1016. 2015.01093.
|
[3] |
张诚, 马华东, 傅慧源. 基于时空关联图模型的视频监控目标跟踪[J]. 北京航空航天大学学报, 2015, 41(4): 713-720. doi: 10.13700/j.bh.1001-5965.2014.0472.
|
|
ZHANG Cheng, MA Huadong, and FU Huiyuan. Object tracking in surveillance videos using spatial-temporal correlation graph model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 713-720. doi: 10.13700/j.bh.1001-5965.2014.0472 .
|
[4] |
GUO Xiaoyan, CAO Yu, and TAO Jun. SVIS: Large Scale Video Data Ingestion into Big Data Platform[M]. Hanoi: Springer, 2015: 300-306.
|
[5] |
SHVACHKO K, KUANG H, RADIA S, et al. The hadoop distributed file system[C]. IEEE 26th Symposium on MASS Storage Systems and Technologies, Nevada, 2010: 1-10. doi: 10.1109/MSST.2010.5496972.
|
[6] |
KIM H, LEE S, KIM Y, et al. Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system[J]. Expert Systems with Applications, 2016, 45(C): 131-141. doi: 10.1016 /j.eswa.2015.09.035.
|
[7] |
CHEN Chunyu, SHAO Yu, and BI Xiaojun. Detection of anomalous crowd behavior based on the acceleration feature[J]. IEEE Sensors Journal, 2015, 15(12): 7252-7261. doi: 10.1109/JSEN.2015.2472960.
|
[8] |
CALDERARA S, CUCCHIARA R, and PRATI A. Detection of abnormal behaviors using a mixture of Von Mises distributions[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, London, 2007: 141-146. doi: 10.1109/AVSS.2007.4425300.
|
[9] |
BALLAN L, BERTINI M, DEL BIMBO A, et al. Effective codebooks for human action categorization[C]. IEEE 12th International Conference on Computer Vision Workshops, Kyoto, 2009: 506-513. doi: 10.1109/ICCVW.2009.5457658.
|
[10] |
WANG Kejun and OLUWATOYIN P P. Ant-based clustering of visual-words for unsupervised human action recognition[C]. World Congress on Nature and Biologically Inspired Computing, Fukuoka, 2010: 654-659. doi: 10.1109/NABIC. 2010.5716377.
|
[11] |
COLLINS R T, LIPTON A J, KANADE T, et al. A system for video surveillance and monitoring[R]. Technical report CMU-RI-TR-00-12, Pittsburgh: Camegie Mellon University, 2000.
|
[12] |
HUANG Kaiqi and TAN Tieniu. Vs-star: A visual interpretation system for visual surveillance[J]. Pattern Recognition Letters, 2010, 31(14): 2265-2285. doi: 10.1016/j. patrec. 2010.05.029.
|
[13] |
GARCIA C R, QUESADAARENCIBIA A, CRISTOBAL T, et al. An intelligent system proposal for improving the safety and accessibility of public transit by highway[J]. Sensors, 2015, 15(8): 20279-20304. doi: 10.3390/s150820279.
|
[14] |
HANCKE G P, SILVA B C, and HANCKE G P. The role of advanced sensing in smart cities[J]. Sensors, 2012, 13(1): 393-425. doi: 10.3390/s130100393.
|
[15] |
HELBING D and BALIETTI S. From social data mining to forecasting socio-economic crises[J]. European Physical Journal Special Topics, 2011, 195(1): 3-68. doi: 10.1140/ epjst/e2011-01401-8.
|
|
|
|