|
|
Direction of Arrival Estimation Method for Spatially Adjacent Coherent Sources Based on Spatial Filtering |
ZHENG Yisong CHEN Baixiao YANG Minglei |
(National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China)
(Collaborative Innovation Center of Information Sensing and Understanding at Xidian University, Xi’an 710071, China) |
|
|
Abstract Coherent sources commonly exist in scenarios with multipath effect. How to decorrelate coherent sources is traditionally a problem urgently to be solved in the array signal processing domain. Especially for spatially adjacent coherent sources, the performance of the estimation of Direction Of Arrival (DOA) remains to be improved. A DOA estimation method based on spatial filtering is proposed for spatially adjacent coherent sources. Multiple coherent sources are separated by spatial filtering and the DOAs are estimated respectively afterwards. The performance of the DOA estimation is enhanced by refining the filter parameters and the DOAs of the coherent sources iteratively. To extend its application to non-uniform linear array, the virtual array technique is adopted. The computer simulation results indicate that the proposed algorithm has better DOA estimation performance than the existing methods. In the scenario of sufficiently high Signal to Noise Ratio (SNR), the Root Mean Square Error (RMSE) could achieve Cramer-Rao Bound (CRB). The effectiveness and the superiority of the proposed method for spatially adjacent coherent sources are validated by the simulation results.
|
Received: 26 August 2016
Published: 02 December 2016
|
|
Fund: The National Natural Science Foundation of China (61571344), The Funds of SAST (SAST2015071, SAST 2015064) |
Corresponding Authors:
ZHENG Yisong
E-mail: zhengys90@163.com
|
|
|
|
[1] |
刘源, 王洪先, 纠博, 等. 米波MIMO雷达低空目标波达方向估计新方法[J]. 电子与信息学报, 2016, 38(3): 622-628. doi: 10.11999/JEIT150555.
|
|
LIU Yuan, WANG Hongxian, JIU Bo, et al. A new method for DOA estimation for VHF MIMO radar in low-angle tracking environment[J]. Journal of Electronics & Information Technology, 2016, 38(3): 622-628. doi: 10.11999/ JEIT150555.
|
[2] |
郑轶松, 陈伯孝. 米波雷达低仰角目标多径模型及其反演方法研究[J]. 电子与信息学报, 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013.
|
|
ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1468-1474. doi: 10.11999/JEIT151013.
|
[3] |
KRIM H and VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94. doi: 10.1109/79. 526899.
|
[4] |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
|
[5] |
ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995. doi: 10.1109/29.32276.
|
[6] |
SHAN Tiejun, WAX M, and KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 806-811. doi: 10.1109/TASSP. 1985.1164649.
|
[7] |
KUNG S, LO C, and FOKA R. A Toeplitz approximation approach to coherent source direction finding[C] IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, 1986: 193-196.
|
[8] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
|
[9] |
HE Z Q, LIU Q H, JIN L N, et al. Low complexity method for DOA estimation using array covariance matrix sparse representation[J]. Electronics Letters, 2013, 49(3): 228-230. doi: 10.1049/el.2012.4032.
|
[10] |
WEI Cui, TONG Qian, and JING Tian. Enhanced covariances matrix sparse representation method for DOA estimation[J]. Electronics Letters, 2015, 51(16): 1288-1290. doi: 10.1049/el.2014.4519.
|
[11] |
LIU Hongqing, ZHAO Liuming, LI Yong, et al. A sparse- based approach for DOA estimation and array calibration in uniform linear array[J]. IEEE Sensors Journal, 2016, 16(15): 6018-6027. doi: 10.1109/JSEN. 2016.2577712.
|
[12] |
WANG Yi, YANG Minglei, CHEN Baixiao, et al. Improved DOA estimation based on real-valued array covariance using sparse Bayesian learning[J]. Signal Processing, 2016, 129: 183-189. doi: 10.1016/j.sigpro.2016.06.002.
|
[13] |
WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
|
[14] |
YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43. doi: 10.1109/TSP.2012.2222378.
|
[15] |
ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
|
[16] |
LIU Zhangmeng, LIU Zheng, FENG Daowang, et al. Direction-of-arrival estimation for coherent sources via sparse Bayesian learning[J]. International Journal of Antennas and Propagation, 2014, (2014): 1-8. doi: 10.1155/2014/959386.
|
[17] |
TEAGUE C C. Root-MUSIC direction finding applied to multifrequency coastal radar[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1896-1898.
|
[18] |
FRIEDLANDER B and WEISS A J. Direction finding using spatial smoothing with interpolated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 574-587. doi: 10.1109/7.144583.
|
|
|
|