|
|
Cyclic Iterative Method for Wideband MIMO Radar Orthogonal Sparse Frequency Waveform Design |
LI Yuxiang REN Xiukun SUN Yang ZHENG Nae |
(School of Navigation and Aerospace Target Engineering, Information Engineering University, Zhengzhou 450001, China) |
|
|
Abstract Wideband MIMO radar exhibits great potential in achieving the goals of high resolution imaging, but it also suffers from the electromagnetic signal congestion and interference problems, especially for radar that works in Very High Frequency (VHF) and Ultra High Frequency (UHF) band. To solve this problem, a cyclic iterative method for designing orthogonal sparse frequency waveforms is proposed. Firstly, the desired spectrum is used as an auxiliary variable, and a new objective function is constructed based on both the mean square error of the spectrum of transmitting waveform with the desired one and the integration side-lobe levels. The optimization model is established under the constraint that the waveform is constant envelope meanwhile the spectrum magnitude lies between the pre-established upper and lower bounds. Then, under the framework of cyclic iterative algorithm, fast Fourier transform and spectral decomposition techniques are used to improve computational efficiency. Simulation results show that the proposed method has good performance in designing orthogonal sparse frequency waveforms with low auto-correlation and cross-correlation side lobes.
|
Received: 06 June 2016
Published: 02 December 2016
|
|
Fund: The National Natural Science Foundation of China (41301481) |
Corresponding Authors:
LI Yuxiang
E-mail: liyuxiangwork@163.com
|
|
|
|
[1] |
李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229-240. doi: 10.11999/ JEIT151116.
|
|
LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics & Information Technology, 2016, 38(1): 229-240. doi: 10.11999/JEIT151116.
|
[2] |
ZHANG Yongshun, JIA Xin, and ZHU Weigang. Suppression of LFM interference in direct sequence spread spectrum communications based on compressive sensing[C]. IEEE International Conference on Signal Processing, Communications and Computing(ICSPCC), Ningbo, China, 2015: 1-5. doi: 10.1109/ICSPCC.2015.7338857.
|
[3] |
胡恒, 贺亚鹏, 庄珊娜, 等. 高频地波雷达稀疏频率波形优化设计[J]. 电子与信息学报, 2012, 34(6): 1291-1296. doi: 10. 3724/SP.J.1146.2011.00666.
|
|
HU Heng, HE Yapeng, ZHUANG Shanna, et al. Sparse frequency waveform design for high frequency surface wave radar[J]. Journal of Electronics & Information Technology, 2012, 34(6): 1291-1296. doi: 10.3724/SP.J.1146.2011.00666.
|
[4] |
WANG Guohua, MAI Chaoyun, SUN Jinping, et al. Sparse frequency waveform analysis and design based on ambiguity function theory[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 707-717. doi: 10.1049/IET-RSN.2015.0270.
|
[5] |
申东, 张林让, 周宇, 等. 频带陷波优化的低距离旁瓣波形设计方法[J]. 北京理工大学学报, 2015, 35(3): 321-325. doi: 10.15918/J.TBIT1001-0645.2015.03029.
|
|
SHEN Dong, ZHANG Linrang, ZHOU Yu, et al. Waveform design with stopband and low range sidelobes[J]. Transactions of Beijing Institute of Technology, 2015, 35(3): 321-325. doi: 10.15918/J.TBIT1001-0645.2015.03029.
|
[6] |
吴灏, 范红旗, 付强. 低距离旁瓣雷达系统设计方法综述[J]. 航空兵器, 2015, 53(4): 3-8. doi: 10.3969/J.ISSN.1673-5048. 2015.04.001.
|
|
WU Hao, FAN Hongqi, and FU Qiang. Overview of design methods for radar system with low range sidelobes[J]. Aero Weaponry, 2015, 53(4): 3-8. doi: 10.3969/J.ISSN.1673-5048. 2015.04.001.
|
[7] |
ZHAO Dehua and WEI Yinsheng. Coherent process and optimal weighting for sparse frequency agility waveform[C]. IEEE Radar Conference, Arlington, 2015: 334-338. doi: 10.1109/RADAR.2015.7131020.
|
[8] |
LINDENFELD M J. Sparse frequency transmit and receive waveform design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 851-861. doi: 10.1109/TAES. 2004.1337459.
|
[9] |
HE Hao, STOICA P, and LI Jian. Waveform design with stopband and correlation constraints for cognitive radar[C]. International Workshop on Cognitive Information Processing (CIP), Elba, Italy, 2010: 344-349. doi: 10.1109/CIP.2010. 5604089.
|
[10] |
AUBRY A, MAIO A De, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138-1152. doi: 10.1109/ TAES.2014.120731.
|
[11] |
WANG G H and LU Y L. Designing single/multiple sparse frequency waveforms with sidelobe constraint[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 32-38. doi: 10.1049/IET- RSN.2009.0255.
|
[12] |
周宇, 张林让, 赵珊珊. 组网雷达低自相关旁瓣和互相关干扰的稀疏频谱波形设计方法[J]. 电子与信息学报, 2014, 36(6): 1394-1399. doi: 10.3724/SP.J.1146.2013.00702.
|
|
ZHOU Yu, ZHANG Linrang, and ZHAO Shanshan. Sparse frequency waveforms design with low correlation sidelobes for netted radar[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1394-1399. doi: 10.3724/SP.J.1146. 2013.00702.
|
[13] |
TROPP J A, DHILLON I S, HEATH R W, et al. Design structured tight frames via an alternating projection method[J]. IEEE Transactions on Information Theory, 2005, 51(1): 188-209. doi: 10.1109/TIT.2004.839492.
|
[14] |
HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations-Including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391-4405. doi: 10.1109/TSP.2009.2025108.
|
[15] |
STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415-1425. doi: 10.1109/TSP.2009.2012562.
|
|
|
|