|
|
High-order Coherent Scattering Model for Vegetation with Fractal Structures |
RAO Liting①② ZHANG Xiaojuan① WANG Youcheng①② FANG Guangyou① |
①(Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China)
②(University of Chinese Academy of Sciences, Beijing 100049, China) |
|
|
Abstract At low frequency, the assumption of independent scattering of the scatterers in vegetation medium is no longer valid. The coherent effect and near field interactions should be considered. In this paper, a high-order coherent scattering model for vegetation with fractal structure is presented. The fractal theory is employed to generate a realistic 3-D spatial structure of vegetation. The near field interaction between scatterers is formulated using an efficient algorithm based on the reciprocity theorem. For the coherent effect, every scatterer with a deterministic location is taken into account. The main scattering mechanisms are defined in the way of layered vegetation model, allowing better understanding of microwave interaction with trunk-crown structure. Good agreements are obtained from the comparisons of the theoretical predictions with the multifrequency and multipolarization measurement results of boreal forest. Through an extensive ground truth, theoretical analysis of the contribution of the scattering mechanisms for various frequencies, incident angles and vegetation structures is carried out. It is found that under specified conditions the vegetation scattering model can be simplified according to the main contribution scattering mechanism which can be applied to the inversion issue.
|
Received: 21 January 2016
Published: 01 September 2016
|
|
Fund: The National Natural Science Foundation of China (61172017) |
Corresponding Authors:
ZHANG Xiaojuan
E-mail: xjzhang@mail.ie.ac.cn
|
|
|
|
[1] |
KWEON A K and OH Y. Modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2802-2809. doi: 10.1109/ TGRS.2014.2364914.
|
[2] |
孙晗伟, 胡程, 曾涛. 一种三维森林场景极化SAR数据的快速模拟方法[J]. 电子信息学报, 2012, 34(6): 1297-1304. doi: 10.3724/SP.J.1146.2011.00766.
|
|
SUN Hanwei, HU Cheng, and ZENG Tao. A fast method of polarimetric sar data simulation for three-dimension forest stand[J]. Journal of Electronics & Information Technology, 2012, 34(6): 1297-1304. doi: 10.3724/SP.J.1146.2011.00766.
|
[3] |
DANUDIRDJO D and HIROSE A. InSAR image regularization and DEM error correction with fractal surface scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1427-1439. doi: 10.1109/TGRS. 2014.2341254.
|
[4] |
ZHANG Qian and CHAI Linna. A parameterized multiple-scattering model for microwave emission from vegetation[C]. Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015: 645-648. doi: 10.1109/IGARSS. 2015.7325846.
|
[5] |
ZOU Bin, ZHANG Yan, CAO Ning, et al. A four-component decomposition model for PolSAR data using asymmetric scattering component[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 8(3): 1051-1061. doi: 10.1109/ JSTARS.2014.2380151.
|
[6] |
LIANG Xiaolin, ZHAO Xiongwen, LI Shu, et al. A non-stationary geometry-based scattering model for street vehicle-to-vehicle wideband MIMO channels[C]. Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, 2015: 2239-2243. doi: 10.1109/PIMRC.2015.7343670.
|
[7] |
SURENDAR M, BHATTACHARYA A, et al. Development of a snow wetness inversion algorithm using polarimetric scattering power decomposition model[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 42: 65-75. doi: 10.1016/j.jag.2015.05.010.
|
[8] |
LEE J S, AINSWORTH T L, and WANG Y T. Generalized polarimetric model-based decompositions using incoherent scattering models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2474-2491. doi: 10.1109/ TGRS.2013.2262051
|
[9] |
KUSANO S, TAKAHASHI K, and SATO M. A new decomposition of a POLSAR coherency matrix using a generalized scattering model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3933-3940. doi: 10.1109/JSTARS.2014.2367540.
|
[10] |
TABATABAEENEJAD A, BURGIN M, DUAN X Y, et al. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first airMOSS results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 645-658. doi: 10.1109/TGRS.2014.2326839.
|
[11] |
TABATABAEENEJAD A, BURGIN M, and MOGHADDAM M. Potential of L-band radar for retrieval of canopy and subcanopy parameters of boreal forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2150-2160. doi: 10.1109/TGRS.2011.2173349.
|
[12] |
ULABY F T, SARABANDI K, MCDONALD K, et al. Michigan microwave canopy scattering model MIMICS[J]. International Journal of Remote Sensing, 1990, 11(7): 1223-1253.
|
[13] |
LIANG P, MOGHADDAM M, et al. Radar backscattering model for multilayer mixed-species forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2612-2626. doi: 10.1109/TGRS.2005.847909.
|
[14] |
THIRION L, COLIN E, and DAHON C. Capabilities of a forest coherent scattering model applied to radiometry, interferometry, and polarimetry at P- and L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 849-862. doi: 10.1109/TGRS.2005.862523.
|
[15] |
BURGIN M, CLEWLEY D, LUCAS R M, et al. A generalized radar backscattering model based on wave theory for multilayer multispecies vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4832-4845. doi: 10.1109/TGRS.2011.2172949.
|
[16] |
TSANG L, KONG J A, and DING K H. Scattering of Electromagnetic Waves: Theories and Applications[M]. New York: Wiley, 2000: 101-108.
|
[17] |
KARAM M A, FUNG A K, and Antar Y M. Electromagnetic wave scattering from some vegetation samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 799-807. doi: 10.1109/36.7711.
|
[18] |
EWE H T and CHUAH H T. Electromagnetic scattering from an electrically dense vegetation medium[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2093-2105. doi: 10.1109/36.868868.
|
[19] |
LIN Y C and SARABANDI K. A monte carlo coherent scattering model for forest canopies using fractal-generated trees[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 440-451. doi:10.1109/36.739083.
|
[20] |
LIU D W, SUN G Q, GUO Z F, et al. Three-dimensional coherent radar backscatter model and simulations of scattering phase center of forest canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 349-357. doi: 10.1109/TGRS.2009.2024301.
|
[21] |
PRUSINKIEWICZ P and LINDENMAYER A. The Algorithmic Beauty of Plants[M]. New York: Spring-Verlag, 1990: 101-107.
|
[22] |
SARABANDI K and POLATIN P F. Electromagnetic scattering from two adjacent objects[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(4): 510-517. doi: 10.1109/8.286219.
|
[23] |
MOGHADDAM M and SAATCHI S. Analysis of scattering mechanisms in SAR imagery over boreal forest: Results from BOREAS’93[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1290-1296. doi: 10.1109/ 36.469495.
|
|
|
|