|
|
A Group Recommendation Framework Based on Social Network Community |
LIU Yu WU Bin ZENG Xuelin ZHANG Yunlei WANG Bai |
(Beijing Key Laboratory of Intelligence Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China) |
|
|
Abstract Group recommendation confronts two major problems, i.e., unambiguous definition and identification of groups and efficient recommendation to users in groups. To tackle the two problems, a group recommendation framework based on social network community is proposed. The framework takes into account social network structural information to identify overlapping groups, which is well interpreted; and fulfills the task of recommending to groups by performing aggregation and allocation strategies using the membership of users related to groups, which considers how much users contribute to groups and benefit from groups. Experimental results on publicly open datasets demonstrate its efficiency and accuracy on the task of group recommendation.
|
Received: 27 May 2016
Published: 09 August 2016
|
|
Fund: The National Key Basic Research and Department Program of China (2013CB329606), Special Fund for Beijing Common Construction Project |
Corresponding Authors:
LIU Yu
E-mail: liuyu@bupt.edu.cn
|
|
|
|
[1] |
MASTHOFF J. Recommender Systems Handbook[M]. Boston, MA: Springer US, ch. Group Recommender Systems: Combining Individual Models, 2011: 677-702.
|
[2] |
JAMESON A and SMYTH B. The Adaptive Web: Methods and Strategies of Web Personalization[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, ch. Recommendation to Groups, 2007: 596-627.
|
[3] |
AMER-YAHIA S, ROY S, CHAWLAT A, et al. Group recommendation: Semantics and efficiency[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 754-765. doi: 10.14778/ 1687627.1687713.
|
[4] |
O’CONNOR M, COSLEY D, KONSTAN J, et al. ECSCW 2001: Proceedings of the Seventh European Conference on Computer Supported Cooperative Work 16-20 September 2001[M]. Bonn, Germany. Dordrecht: Springer Netherlands, ch. PolyLens: A Recommender System for Groups of Users, 2001: 199-218.
|
[5] |
DE CAMPOS L M, FERNANDEZ-LUNA J M, HUETE J F, et al. Group recommending: a methodological approach based on bayesian networks[C]. IEEE 23rd International Conference on Data Engineering Workshop, Istanbul, Turkey, 2007: 835-844.
|
[6] |
O’HARA K, LIPSON M, JANSEN M, et al. Jukola: democratic music choice in a public space[C]. Proceedings of the 5th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, New York, USA, 2004: 145-154.
|
[7] |
SPRAGUE D, WU F, and TORY M. Music selection using the partyvote democratic jukebox[C]. Proceedings of the Working Conference on Advanced Visual Interfaces, New York, USA, 2008: 433-436.
|
[8] |
CHAO D L, BALTHROP J, and FORREST S. Adaptive radio: achieving consensus using negative preferences[C]. Proceedings of the 2005 International ACM SIGGROUP Conference on Supporting Group Work, New York, USA, 2005: 120-123.
|
[9] |
MCCARTHY J F and ANAGNOST T D. Musicfx: An arbiter of group preferences for computer supported collaborative workouts[C]. Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, New York, USA, 1998: 363-372.
|
[10] |
SHI J, WU B, and LIN X. A latent group model for group recommendation[C]. 2015 IEEE International Conference on Mobile Services, New York, USA, 2015: 233-238.
|
[11] |
BALTRUNAS L, MAKCINSKAS T, and RICCI F. Group recommendations with rank aggregation and collaborative filtering[C]. Proceedings of the Fourth ACM Conference on Recommender Systems, New York, USA, 2010: 119-126.
|
[12] |
PAZZANI M J and BILLSUS D. The Adaptive Web: Methods and Strategies of Web Personalization[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, ch. Content-Based Recommendation Systems, 2007: 325-341.
|
[13] |
SHI Y, LARSON M, and HANJALIC A. Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges[J]. ACM Computing Surveys, 2014, 47(1): 1-45. doi: 10.1145/2556270.
|
[14] |
王玉斌, 孟祥武, 胡勋. 一种基于信息老化的协同过滤推荐算法[J]. 电子与信息学报, 2013, 35(10): 2391-2396. doi: 10.3724 /SP.J.1146.2012.01743.
|
|
WANG Y, MENG X, and HU X. Information aging-based collaborative filtering recommendation algorithm[J]. Journal of Electronics & Information Technology, 2013, 35(10): 2391-2396. doi: 10.3724/SP.J.1146.2012.01743.
|
[15] |
邢星. 社交网络个性化推荐方法研究[D]. [博士论文], 大连海事大学, 2013.
|
|
XING X. Research on recommendation methods in social networks[D]. [Ph.D. dissertation], Dalian Maritime University, 2013.
|
[16] |
涂丹丹, 舒承椿, 余海燕. 基于联合概率矩阵分解的上下文广告推荐算法[J]. 软件学报, 2013, 24(3): 454-464. doi: 10.3724/ SP.J.1001.2013.04238.
|
|
TU D, SHU C, and YU H. Using unified probabilistic matrix factorization for contextual advertisement recommendation [J]. Journal of Software, 2013, 24(3): 454-464. doi: 10.3724/ SP.J.1001.2013.04238.
|
[17] |
GIRVAN M and NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826. doi: 10.1073/ pnas.122653799.
|
[18] |
BORATTO L and CARTA S. Using collaborative filtering to overcome the curse of dimensionality when clustering users in a group recommender system[C]. Proceedings of 16th International Conference on Enterprise Information Systems, Lisbon, Portugal, 2014: 564-572.
|
[19] |
方耀宁, 郭云飞, 丁雪涛, 等. 一种基于局部结构的改进奇异值分解推荐算法[J]. 电子与信息学报, 2013, 35(6): 1284-1289. doi: 10.3724/SP.J.1146.2012.01299.
|
|
FANG Y, GUO Y, DING X, et al. An improved singular value decomposition recommender algorithm based on local structures[J]. Journal of Electronics & Information Technology, 2013, 35(6): 1284-1289. doi: 10.3724/SP.J.1146. 2012.01299.
|
[20] |
DING C, LI T, and PENG W, et al. Orthogonal nonnegative matrix t-factorizations for clustering[C]. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2006: 126-135.
|
[21] |
CANTADOR I, and CASTELLS P. Extracting multilayered communities of interest from semantic user profiles: application to group modeling and hybrid recommendations [J]. Computers in Human Behavior, 2011, 27(4): 1321-1336. doi: 10.1016/j.chb.2010.07.027.
|
[22] |
SHI X, LU H, HE Y, et al. Community detection in social network with pairwisely constrained symmetric non-negative matrix factorization[C]. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, France, 2015: 541-546.
|
[23] |
PSORAKIS I, ROBERTS S, EDBEN M, et al. Overlapping community detection using Bayesian non-negative matrix factorization[J]. Physical Review E, 2011, 83(6): 066114. doi: 10.1103/PhysRevE.83.066114.
|
[24] |
LibRec. Datasets[OL]. http://www.librec.net/datasets.html, 2016.
|
|
|
|