|
|
Resource Allocation Algorithm Based on Stable Matching in Hierarchical Cognitive Radio Networks |
CAO Long①② ZHAO Hangsheng② BAO Lina③ ZHANG Jianzhao② |
①(Institute of Communications Engineering, PLA University of Science and Technology, Nanjing 210007, China)
②(Nanjing Telecommunication Technology Institute, Nanjing 210007, China)
③(Jiangsu Branch, China Unicom Corporation Limited, Nanjing 210019, China) |
|
|
Abstract The rational spectrum resource allocation is one of the goals of Cognitive Radio (CR) technology. With the rapid increase of Secondary Users (SUs) numbers, the precise and real-time management becomes more and more difficult to achieve. In order to solve this problem, a hierarchical Cognitive Radio Network (CRN) architecture that several administration entities focus on providing spectrum services for users of variety tiers is proposed. The corresponding resource allocation algorithm based on stable matching in this architecture is also given. This algorithm guarantees the restriction on SUs’ transmission power for Primary Users (PUs), and also considers both utility functions of users. Simulation results demonstrate that the proposed method can roughly achieve the same performance of optimal solution with lower computation complexity and system delay.
|
Received: 24 December 2015
Published: 14 July 2016
|
|
Fund: The National Natural Science Foundation of China (61471395, 61471392, 61301161), The Natural Science Foundation of Jiangsu Province (BK20141070) |
Corresponding Authors:
CAO Long
E-mail: caolong460@sohu.com
|
|
|
|
[1] |
OSSEIRAN A, BRAUN V, HIDEKAZU T, et al. The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions[C]. IEEE Vehicular Technology Conference, Dresden, 2013: 1-5. doi: 10.1109/VTCSpring.2013.6692781.
|
[2] |
AHMAD A, AHMAD S, REHMANI M H, et al. A survey on radio resource allocation in cognitive radio sensor networks[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 888-917. doi: 10.1109/COMST.2015.2401597.
|
[3] |
VASSAKI S, POULAKIS M I, and PANAGOPOULOS A D. Spectrum leasing in cognitive radio networks: a matching theory approach[C]. IEEE Vehicular Technology Conference, Glasgow, 2015: 1-5. doi: 10.1109/VTCSpring.2015.7146101.
|
[4] |
MITOLA J, GUERCI J, REED J, et al. Accelerating 5G QoE via public-private spectrum sharing[J]. IEEE Communications Magazine, 2014, 52(5): 77-85. doi: 10.1109/ MCOM.2014.6815896.
|
[5] |
MUSAVIAN L and AISSA S. Capacity and power allocation for spectrum sharing communications in fading channels[J]. IEEE Transactions Wireless Communications, 2009, 8(1): 148-156. doi: 10.1109/TWC.2009.070265.
|
[6] |
ASGHARI V and AISSA S. Adaptive rate and power transmission in spectrum-sharing systems[J]. IEEE Transactions Wireless Communications, 2010, 9(10): 3272-3280. doi: 10119/TWC.2010.090210.100291.
|
[7] |
ZHOU X, LI G Y, LI D, et al. Probabilistic resource allocation for opportunistic spectrum access[J]. IEEE Transactions Wireless Communications, 2010, 9(9): 2870-2879. doi: 10119/ TWC.2010.070610.091511.
|
[8] |
潘甦, 曹跑跑, 刘胜美. 一种多无线电系统中基于公平性和精细化带宽分配的资源分配算法[J]. 电子与信息学报, 2015, 37(2): 399-404. doi: 10.11999/ JEIT140339.
|
|
PAN S, CAO P, and LIU S. A resource allocation algorithm based on proportional fairness and refined bandwidth allocation for multi-radio systems[J]. Journal of Electronics & Information Technology, 2015, 37(2): 399-404. doi: 10.11999/ JEIT140339.
|
[9] |
XU Y, ANPALAGAN A, WU Q, et al. Decision-theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1689-1713. doi: 10.1109/ SURV.2013.030713.00189.
|
[10] |
IEEE 1900.5-2011. Standard for policy language requirements and system architectures for dynamic spectrum access (DSA) systems [S]. 2011.
|
[11] |
Al-Ali A K, SUN Y, FELICE M D, et al. Accessing spectrum databases using interference alignment in vehicular cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 263-272. doi: 10.1109/TVT.2014. 2318837.
|
[12] |
CHEN X and HUANG J. Database-assisted distributed spectrum sharing[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11): 2349-2361. doi: 10.1109/ JSAC.2013.131110.
|
[13] |
GOLDSMITH A, JAFAR S A, MARIC I, et al. Breaking spectrum gridlock with cognitive radios: an information theoretic perspective[J]. Proceedings of the IEEE, 2009, 97(5): 894-914. doi: 10.1109/JPROC.2009.2015717.
|
[14] |
PAPADIMITRIOU C H and STEIGLITZ K. Combinatorial Optimization: Algorithms and Complexity[M]. New York, USA, Dover Press, 1998: 248-255.
|
[15] |
IBM. Cplex optimizer[OL]. http://www-01.ibm.com/ software/commerce/optimization/cplex-optimizer, 2016.
|
[16] |
GUSFIELD D and IRVING R W. The Stable Marriage Problem: Structure and Algorithms[M]. Cambridge, MA, USA, MIT Press, 1989: 1-8.
|
[17] |
GALE D and SHAPLEY L S. College admissions and the stability of marriage[J]. The American Mathematical Monthly, 1962, 69(1): 9-15. doi: 10.2307/2312726.
|
[18] |
GU Y, SAAD W, BENNIS M, et al. Matching theory for future wireless networks: fundamentals and applications[J]. IEEE Communications Magazine, 2015, 53(5): 52-59. doi: 10.1109/ MCOM.2015.7105641.
|
[19] |
JORSWIECK E. Stable matchings for resource allocation in wireless networks[C]. International Conference on Digital Signal Processing (DSP), Corfu, 2011: 1-8. doi: 10.1109/ ICDSP.2011.6004983.
|
[20] |
NAEEM M, ANPALAGAN A, JASEEMUDDIN M, et al. Resource allocation techniques in cooperative cognitive radio networks[J]. IEEE Communications Surveys & Tutorials, 2014, 16(2): 729-744. doi: 10.1109/SURV.102313.00272.
|
[21] |
MANLOVE D F. Algorithmics of Matching Under Preferences[M]. Singapore, World Scientific Press, 2013: 1-47.
|
|
|
|