|
|
Joint Source Channel and Security Arithmetic Coding Controlled by Chaotic Keys |
YAN Yi① ZHANG Can① GUO Zhenyong①② GAO Shaoshuai① CHEN Deyuan① |
①(School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China)
②(Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) |
|
|
Abstract In order to transfer effective, reliable and secure information in resource-constrained networks such as deep space communications and mobile communications, a joint source channel security arithmetic coding method controlled by chaotic keys is proposed. At encoding, the first chaotic map allocates the probability of multiple forbidden symbols in arithmetic code, combining error detection by channel coding and disorder of key streams; meanwhile, the second chaotic map controls the source symbols in arithmetic code, combining source coding and information security. Simulation results show that the proposed method can not only achieve 0.4 dB signal-to-noise ratio gains compared with the existing similar arithmetic codes under the condition of same error rate, but also be of high reliability and security.
|
Received: 17 December 2015
Published: 04 July 2016
|
|
Fund: The National Natural Science Foundation of China (61571416, 61271282, 61032006) |
Corresponding Authors:
ZHANG Can
E-mail: czhang@ucas.ac.cn
|
|
|
|
[1] |
MAGLI E, GRANGETTO M, and OLMO G. Joint source, channel coding, and secrecy[J]. EURASIP Journal on Information Security, 2007, 2007(1): 1-7. doi: 10.1155/2007/ 79048.
|
[2] |
BOYD C, CLEARY J, IRVINE S, et al. Integrating error detection into arithmetic coding[J]. IEEE Transactions on Communications, 1997, 45(1): 1-3. doi: 10.1109/26.554275.
|
[3] |
GRANGETTO M and COSMAN P. MAP decoding of arithmetic codes with a forbidden symbol[C]. Proceedings of Advanced Concepts for Intelligent Vision Systems, Ghent, Belgium, 2002: 82-89.
|
[4] |
GRANGETTO M, MAGLI E, and OLMO G. Joint source/channel coding and MAP decoding of arithmetic codes[J]. IEEE Transactions on Communications, 2005, 53(6): 1007-1016. doi: 10.1109/TCOMM.2005.849690.
|
[5] |
JAMAA S B, KIEFFER M, and DUHAMEL P. Improved sequential MAP estimation of CABAC encoded data with objective adjustment of the complexity/efficiency tradeoff [J]. IEEE Transactions on Communications, 2009, 57(7): 2014-2023. doi: 10.1109/TCOMM.2009.07.070566.
|
[6] |
SPITERI T and BUTTIGIEG V. Maximum a posteriori decoding of arithmetic codes in joint source-channel coding[C]. International Joint Conference on e-Business and Telecommunications, Athens, 2012: 363-377. doi: 10.1007/ 978-3-642-25206-8_24.
|
[7] |
夏志进, 杨铭, 崔慧娟, 等. 多禁止符号算术编码高效错误检测算法[J]. 清华大学学报(自然科学版), 2005, 45(7): 935-938. doi: 10.3321/j.issn:1000-0054.2005.07.019.
|
|
XIA Zhijin, YANG Ming, CUI Huijuan, et al. Efficient arithmetic code error detection algorithm with multiple forbidden symbols[J]. Journal of Tsinghua University(Science and Technology), 2005, 45(7): 935-938. doi: 10.3321/j.issn: 1000-0054.2005.07.019.
|
[8] |
GRANGETTO M, MAGLI E, and OLMO G. Multimedia selective encryption by means of randomized arithmetic coding[J]. IEEE Transactions on Multimedia, 2006, 8(5): 905-917. doi: 10.1109/TMM.2006.879919.
|
[9] |
MI B, LIAO X F, and CHEN Y. A novel chaotic encryption scheme based on arithmetic coding[J]. Chaos Solitons & Fractals, 2008, 38(5): 1523-1531. doi: 10.1016/j.chaos. 2007.01.133.
|
[10] |
李林森, 张灿, 陈德元. 基于CCSDS IDC的联合信源与安全编译码[J]. 中国科学院学报, 2012, 29(3): 384-391.
|
|
LI Linsen, ZHANG Can, and CHEN Deyuan. Joint source encryption coding based on CCSDS image data compression standard[J]. Journal of University of Chinese Academy of Sciences, 2012, 29(3): 384-391.
|
[11] |
LIN Q Z and WONG K W. An improved iterative decoding scheme based on error-resistant arithmetic code[C]. 2014 IEEE International Symposium on Circuits and Systems, Melbourne, 2014: 1704-1707. doi: 10.1109/ISCAS.2014. 6865482.
|
[12] |
ZEZZA S, MASERA G, and NOOSHABADI S. A novel decoder architecture for error resilient JPEG2000 applications based on MQ arithmetic[C]. 2014 IEEE International Symposium on Circuits and Systems, Melbourne, 2014: 902-905. doi: 10.1109/ISCAS.2014. 6865282.
|
[13] |
ZHANG C Y, XIANG F, and ZHANG L W. Study on cryptographical properties of several chaotic pseudorandom sequences[C]. 2009 International Symposium on Computer Network and Multimedia Technology, Wuhan, 2009: 1-4. doi: 10.1109/CNMT.2009.5374713.
|
[14] |
JAMAA S B, WEIDMANN C, and KIEFFER M. Analytical tools for optimizing the error correction performance of arithmetic codes[J]. IEEE Transactions on Communications, 2008, 56(9): 1458-1468. doi: 10.1109/TCOMM.2008.060401.
|
[15] |
STALLINGS W, 王张宜, 杨敏, 等. 密码编码学与网络安全——原理与实践(第5版)[M]. 北京: 电子工业出版社, 2012: 106-137.
|
|
STALLINGS W, WANG Zhangyi, YANG Min, et al. Cryptography and Network Security: Principles and Practice (Fifth Edition)[M]. Beijing: Publishing House of Electronics Industry, 2012: 106-137.
|
[16] |
HAGENAUER J. Rate-compatible punctured convolutional codes (RCPC codes) and their applications[J]. IEEE Transactions on Communications, 1988, 36(4): 389-400. doi: 10.1109/26.2763.
|
[17] |
刘泉, 李佩玥, 章明朝, 等. 基于可Markov分割混沌系统的图像加密算法[J]. 电子与信息学报, 2014, 36(6): 1271-1277. doi: 10.3724/SP.J.1146.2013.01246.
|
|
LIU Quan, LI Peiyue, ZHANG Mingchao, et al. Image encryption algorithm based on chaos system having Markov portion[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1271-1277. doi: 10.3724/SP.J.1146.2013.01246.
|
[18] |
邓晓衡, 廖春龙, 朱从旭, 等. 像素位置与比特双重置乱的图像混沌加密算法[J]. 通信学报, 2014, 35(3): 216-223. doi: 10.3969/j.issn.1000-436x.2014.03.025.
|
|
DENG Xiaoheng, LIAO Chunlong, ZHU Congxu, et al. Image encryption algorithms based on chaos through dual scrambling of pixel position and bit[J]. Journal on Communications, 2014, 35(3): 216-223. doi: 10.3969/j.issn. 1000-436x.2014.03.025.
|
[19] |
RUKHIN A, SOTO J, NECHVATAL J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications, SP-800-22[R]. Washington: National Institute of Standards and Technology, 2001.
|
[20] |
张顺, 高铁杠. 基于类DNA编码分组与替换的加密方案 [J]. 电子与信息学报, 2015, 37(1): 150-157. doi: 10.11999/ JEIT140091.
|
|
ZHANG Shun and GAO Tiegang. Encryption based on DNA coding, codon grouping and substitution[J]. Journal of Electronics & Information Technology, 2015, 37(1): 150-157. doi: 10.11999/JEIT140091.
|
|
|
|