|
|
Parameter Estimation and Time-frequency Distribution of Fractional Lower Order Time-frequency Auto-regressive Moving Average Model Algorithm Based on SαS Process |
LONG Junbo① WANG Haibin② |
①(College of Electronic and Engineering, Jiujiang University, Jiujiang 332005, China)
②(College of Information Science and Technology, Jiujiang University, Jiujiang 332005, China) |
|
|
Abstract The performances of Time-Frequency Auto-Regressive Moving Average (TFARMA) model method degenerate under SS distribution environment. Hence, Fractional Lower Order Time-Frequency Auto- Regressive Moving Average (FLO-TFARMA) model algorithm based on fractional lower order covariant is proposed, the parameters estimation of FLO-TFARMA model is introduced, time-frequency distribution based on FLO-TFARMA model is given, FLO-TFARMA model algorithm are compared with the existing TFARMA algorithm in detail. The simulation results show that FLO-TFARMA model method have better performance than TFARMA model method under SαS distribution environment, and the time-frequency spectrum of FLO- TFARMA method is more obvious when the parameter α is smaller.
|
Received: 21 September 2015
Published: 03 June 2016
|
|
Fund: The National Natural Science Foundation of China (61261046, 61362038), The Natural Science Foundation of Jiangxi Province (20142BAB207006), The Research Foundation of Education Bureau of Jiangxi Province (GJJ14738, GJJ14739) |
Corresponding Authors:
LONG Junbo
E-mail: 18488870@qq.com
|
|
|
|
[1] |
JACHAN M, MATZ G, and HLAWATSCH F. Least-squares and maximum-likelihood TFAR parameter estimation for nonstarionary processes[C]. IEEE ICASSP-2006, Toulouse, France, 2006: 492-495.
|
[2] |
JACHAN M, MATZ G, and HLAWATSCH F. Time- frequency autoregressive random processes: Modeling and fast parameter estimation[C]. IEEE ICASSP-2003, Hong Kong, China, 2003: 125-128.
|
[3] |
JACHAN M, MATZ G, and HLAWATSCH F. Vector time- frequency AR Models for nonstationary multivariate random processes[J]. IEEE Transactions on Signal Processing, 2009, 57(12): 4646-4658.
|
[4] |
JACHAN M, MATZ G, and HLAWATSCH F. Time- frequency-moving-average processes: Principles and cepstral methods for paramerer estimation[C]. IEEE ICASSP-2004, Quebec, Canada, 2004: 757-760.
|
[5] |
GRENIER Y. Time-dependent ARMA modeling of nonstationary signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(4): 899-911.
|
[6] |
SPIRIDONAKOS M D and FASSOIS S D. Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA (FS-TARMA) models-a critical survey[J]. Mechanical Systems & Signal Processing, 2014, 47(3): 175-224.
|
[7] |
JACHAN M, MATZ G, and HLAWATSCH F. Time- frequency ARMA models and parameter estimators for underspread nonstationary random processes[J]. IEEE Transactions on Signal Processing, 2007, 55(9): 4366-4380.
|
[8] |
FENG Z P, LIANG M, and CHU F L. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 3(38): 165-205.
|
[9] |
李兵兵, 马洪帅, 刘明骞. Alpha 稳定分布噪声下时频重叠信号的载波频率估计方法[J]. 电子与信息学报, 2014, 36(4): 868-874. doi: 10.3724/SP.J.1146.2013.00827.
|
|
LI Bingbing, MA Hongshuai, and LIU Mingqian. Carrier frequency estimation method of time-frequency overlapped signals with alpha-stable noise[J]. Journal of Electronics & Information Technology, 2014, 36(4): 868-874. doi: 10.3724/ SP.J.1146.2013.00827.
|
[10] |
KOMATY A, BOUDRA A O, and NOLAN J P. On the behavior of EMD and MEMD in presence of symmetric-stable noise[J]. IEEE Signal Processing Letters, 2015, 22(7): 818-822.
|
[11] |
龙俊波, 汪海滨, 查代奉. 无限方差噪声环境下的分数低阶空间时频盲源分离[J]. 信号处理, 2014, 30(10): 1150-1156.
|
|
LONG Junbo, WANG Haibin, and ZHA Daifeng. Fractional lower order spatial time-frequency blind source separation in infinite variance noise environment[J]. Journal of Signal Processing, 2014, 30(10): 1150-1156.
|
[12] |
PELE D T. A approach for estimating the parameters of an alpha-stable distribution[C]. International Conference on Applied Statistics (ICAS), Chamonix, France, 2014: 68-77.
|
[13] |
赵新明, 金艳, 姬红兵. 稳定分布噪声下基于Merid 滤波的跳频信号参数估计[J]. 电子与信息学报, 2014, 36(8): 1878-1883. doi: 10.3724/SP.J.1146.2013.01436.
|
|
ZHAO Xinming, JIN Yan, and JI Hongbing. Parameter estimation of frequency-hopping signals based on merid filter in a stable noise environment[J]. Journal of Electronics & Information Technology, 2014, 36(8): 1878-1883. doi: 10. 3724/SP.J.1146.2013.01436.
|
[14] |
王首勇, 朱晓波, 李旭涛, 等. 基于分数低阶协方差的AR 模型谱估计[J]. 电子学报, 2007, 35(9): 1637-1641.
|
|
WANG Shouyong, ZHU Xiaobo, LI Xutao, et al. - spectrum estimation for AR processes based on FLOC[J]. Acta Electronica Sinica, 2007, 35(9): 1637-1641.
|
[15] |
王首勇, 朱晓波. 基于FLOC的ARMA 模型 谱估计方法[J]. 通信学报, 2007, 28(7): 98-103.
|
|
WANG Shouyong and ZHU Xiaobo. -spectrum estimation method for ARMA process based on FLOC[J]. Journal on Communications, 2007, 28(7): 98-103.
|
[16] |
WANG H B, LONG J B, and ZHA D F. Pseudo cohen time- frequency distributions in infinite variance noise environment [J]. Applied Mechanics and Materials, 2014, 475/476: 253-258.
|
[17] |
龙俊波, 汪海滨, 查代奉. 基于稳定分布噪声的分数低阶自适应时频分布[J]. 计算机工程, 2011, 37(18): 81-83.
|
|
LONG Junbo, WANG Haibin, and ZHA Daifeng. Fractional low-order adaptive time-frequency distribution based on stable distribution noise[J]. Computer Engineering, 2011, 37(18): 81-83.
|
[18] |
MA X Y and NIKIAS C L. Parameter estimation and blind channel identification in impulsive signal environments[J]. IEEE Transactions on Signal Processing, 1995, 43(12): 2884-2897.
|
|
|
|