|
|
An adaptive Edge Detection Approach Based on the Gradient Direction Consistency |
LI Zheng ZHANG Hai |
(Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China) |
|
|
Abstract A novel mathematical index about edge detection is constructed to indicate both conspicuous edges and inconspicuous edges in a gray-level image. The index called Sum of Gradient Direction (SGD) is derived from the basic idea that the gradient directions of the points surrounding the real edge point have good consistency while the gradient directions of those surrounding the noise point have poor consistency. According to the SGD index a new adaptive thresholding method to detect edges is proposed. A great quantity of experiments show that: the SGD index has the ability to distinguish both conspicuous edge points and inconspicuous edge points from the noisy points; the proposed novel edge detector utilizing the SGD to regulate the gradient threshold has the ability of detecting weak edges and suppressing noisy points at the same time.
|
Received: 10 October 2015
Published: 26 April 2016
|
|
Corresponding Authors:
LI Zheng
E-mail: bayexx@126.com
|
|
|
|
[1] |
TSAI Piyu, CHANG C C, and HU Y C. An adaptive two-stage edge detection scheme for digital color images[J]. Real-Time Imaging, 2002, 8(4): 329-343. doi: 10.1006/rtim. 2001.0286.
|
[2] |
ZIOU D and TABBONE S. Edge detection techniques-an overview[J]. International Journal of Pattern Recognition & Image Analysis, 2000, 8(4): 537-559.
|
[3] |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. doi: 10.1109/TPAMI.1986. 4767851.
|
[4] |
GALVANIN E A S, DO VALE G M, and DAL POZ A P. The canny detector with edge region focusing using an anisotropic diffusion process[J]. Pattern Recognition and Image Analysis, 2006, 16(4): 614-621. doi: 10.1134/S1054661806040067.
|
[5] |
HANCOCK E R and KITTLER J. Adaptive estimation of hysteresis thresholds[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Proceedings CVPR’91), Maui, HI, USA, 1991: 196-201. doi: 10.1109/ CVPR.1991. 139687.
|
[6] |
RAY K. Unsupervised edge detection and noise detection from a single image[J]. Pattern Recognition, 2013, 46(8): 2067-2077. doi: 10.1016/j.patcog.2013.01.029.
|
[7] |
ZHANG Xiaochun and LIU Chuancai. An ideal image edge detection scheme[J]. Multidimensional Systems and Signal Processing, 2014, 25(4): 659-681. doi: 10.1007/s11045- 013-0224-9.
|
[8] |
SHUI P L and ZHANG W C. Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels[J]. Pattern Recognition, 2012, 45(2): 806-820. doi: 10.1016/ j.patcog.2011.07.020.
|
[9] |
石美红, 李青, 赵雪青, 等. 一种基于保角相位的图像边缘检测新方法[J]. 电子与信息学报, 2015, 37(11): 2594-2600. doi: 10.11999/JEIT150364.
|
|
SHI Meihong, LI Qing, ZHAO Xueqing, et al. A new approach for image edge detection based on conformal phase[J].Journal of Electronics & Information Technology, 2015, 37(11): 2594-2600. doi: 10.11999/JEIT150364.
|
[10] |
许宏科, 秦严严, 陈会茹. 一种基于改进Canny的边缘检测算法[J]. 红外技术, 2014, 36(3): 210-214.
|
|
XU Hongke, QIN Yanyan, and CHEN Huiru. An improved algorithm for edge detection based on canny[J]. Infrared Technology, 2014, 36(3): 210-214.
|
[11] |
HAO Fei, SHI Jinfei, ZHANG Zhisheng, et al. Canny edge detection enhancement by general auto-regression model and bi-dimensional maximum conditional entropy[J]. Optik, 2014, 125(15): 3946-3953. doi: 10.1016/j.ijleo.2014.01.153.
|
[12] |
XU Qian, VARADARAJAN S, CHAKRABARTI C, et al. A distributed Canny edge detector: algorithm and FPGA implementation[J]. IEEE Transactions on Image Processing, 2014, 23(7): 2944-2960. doi: 10.1109/TIP.2014.2311656.
|
[13] |
MORRONE M, ROSS J, BURR D, et al. Mach bands are phase dependent[J]. Nature, 1986, 324(6094): 250-253.
|
[14] |
MORRONE M C and BURR D C. Feature detection in human vision: A phase-dependent energy model[J]. Proceedings of the Royal Society of London B: Biological Sciences, 1988, 235(1280): 221-245. doi: http://dx.doi.org/ 10.1098/rspb.1988.0073.
|
[15] |
KOVESI P. Image features from phase congruency[J]. Videre: Journal of Computer Uision Research, 1999, 1(3): 1-26.
|
[16] |
WANG Lijuan, ZHANG Changsheng, LIU Ziyu, et al. Image feature detection based on phase congruency by monogenic filters[C]. 2014 26th Chinese Control and Decision Conference (CCDC 2014), Changsha, China, 2014: 2033-2038. doi: 10.1109/CCDC.2014.6852502.
|
[17] |
FELSBERG M, and GERALD S. The monogenic signal[J]. IEEE Transactions on Signal Processing, 2001, 49(12): 3136-3144. doi: 10.1109/78.969520.
|
[18] |
KITCHEN L and ROSENFELD A. Edge evaluation using local edge coherence[C]. Proceedings SPIE Techniques and Applications of Image Understanding, Washington, D.C., USA, 1981: 284-298. doi:10.1117/12.965757.
|
[19] |
BURNS J B, HANSON A R, and RISEMAN E M. Extracting straight lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(3): 425-455. doi: 10.1109/ TPAMI.1986.4767808.
|
[20] |
张志龙, 杨卫平, 李吉成. 一种基于蚁群优化的显著边缘检测算法[J]. 电子与信息学报, 2014, 36(9): 2061-2067. doi: 10.3724/SP.J.1146.2013.01506.
|
|
ZHANG Zhilong, YANG Weiping, and LI Jicheng. A novel salient image edge detection algorithm based on ant colony optimization[J]. Journal of Electronics & Information Technology, 2014, 36(9): 2061-2067. doi: 10.3724/SP.J.1146. 2013.01506.
|
[21] |
冈萨雷斯. 阮秋琦, 阮宇智. 数字图像处理第2版[M]. 北京:电子工业出版社, 2007: 464.
|
[22] |
BOWYER Kevin, KRANENBURG Christine and DOUGHERTY Sean. Edge detector evaluation using empirical ROC curves[J]. Computer Vision and Image Understanding, 2001, 84(1): 77-103. doi: 10.1006/cviu.2001. 0931.
|
|
|
|