|
|
Green Communications Based on Physical-layer Security for Amplify-and-forward Relay Networks |
WANG Dong①②③ LI Yongcheng① BAI Bo② WANG Manxi① |
①(State Key Laboratory of Complex Electromagnetic Environmental Effects on Electronics and Information System, Luoyang 471003, China)
②(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
③(New Star Research Institute of Applied Technology, Hefei 230031, China) |
|
|
Abstract In this paper, a green communication scheme based on physical layer security is addressed considering the energy and secrecy constraints. This scheme maximizes the secure Energy Efficiency (EE) of the network by power allocation subject to the maximum power constraint of each node and the target secrecy rate constraint of the network. Furthermore, an iterative algorithm for power allocation is developed based on fractional programming, dual decomposition, and Difference of Convex functions (DC) programming. It is verified by simulations that the proposed algorithm can lead to a significant gain of secure EE yet with some loss of secrecy rate compared with secrecy rate maximization. This is because that there is an inherent tradeoff between EE and secrecy. However, the achievable secrecy rate of the proposed scheme is still superior over that of total transmission power minimization.
|
Received: 08 June 2015
Published: 26 February 2016
|
|
Fund: The Open Project Foundation of CEMEE State Key Laboratory (CEMEE2015K0204B) |
Corresponding Authors:
BAI Bo
E-mail: eebobai@tsinghua.edu.cn
|
|
|
|
[1] |
黄开枝, 洪颖, 罗文宇, 等. 基于演化博弈机制的物理层安全协作方法[J]. 电子与信息学报, 2015, 37(1): 193-199. doi: 10.11999/JEIT140309.
|
|
HUANG Kaizhi, HONG Ying, LUO Wenyu, et al. A method for physical layer security cooperation based on evolutionary game[J]. Journal of Electronics & Information Technology, 2015, 37(1): 193-199. doi: 10.11999/JEIT140309.
|
[2] |
LIU J, DAI H, and CHEN W. Delay optimal scheduling for energy harvesting based communications[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(3): 452-466. doi: 10.1109/JSAC.2015.2391972.
|
[3] |
CHEN W, DAI L, LETAIEF K B, et al. A unified cross-layer framework for resource allocation in cooperative networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(8): 3000-3012. doi: 10.1109/TWC. 2008.060831.
|
[4] |
黄高勇, 方旭明, 陈煜. 基于速率约束的OFDM中继链路能效最优资源分配策略[J]. 电子与信息学报, 2014, 36(9): 2104-2110. doi: 10.3724/SP.J.1146.2013.01661.
|
|
HUANG Gaoyong, FANG Xuming, and CHEN Yu. Resource allocation for energy efficiency maximization based on rate constrains in OFDM DF relay link[J]. Journal of Electronics & Information Technology, 2014, 36(9): 2104-2110. doi: 10.3724/SP.J.1146.2013.01661.
|
[5] |
LI J, PETROPULU A P, and WEBER S. On cooperative relaying schemes for wireless physical layer security[J]. IEEE Transaction on Signal Processing, 2011, 59(10): 4985-4996. doi: 10.1109/TSP.2011.2159598.
|
[6] |
DEHGHAN M, GOECKEL D L, GHADERI M, et al. Energy efficiency of cooperative jamming strategies in secure wireless networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(9): 3025-3029. doi: 10.1109/ TWC.2012.070912.110789.
|
[7] |
EL-HALABI M, LIU T, and GEORGHIADES C N. Secrecy capacity per unit cost[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1909-1920. doi: 10.1109/ JSAC.2013.130922.
|
[8] |
NG D W K, LO E S, and SCHOBER R. Energy-efficient resource allocation for secure OFDMA systems[J]. IEEE Transactions on Vehicular Technology, 2012, 61(6): 2572-2585. doi: 10.1109/TVT.2012.2199145.
|
[9] |
COMANICIU C, POOR H V, and ZHANG R. An information theoretic framework for energy efficient secrecy [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, British Columbia, Canada, 2013: 2906-2910.
|
[10] |
CHEN W. CAO-SIR: Channel aware ordered successive relaying[J]. IEEE Transactions on Wireless Communications, 2014, 13(12): 6513-6527. doi: 10.1109/TWC.2014.2363453.
|
[11] |
LIU J, CHEN W, ZHANG Y, et al. A utility maximization framework for fair and efficient multicasting in multicarrier wireless cellular networks[J]. IEEE/ACM Transactions on Networking, 2013, 21(1): 110-120. doi: 10.1109/TNET. 2012.2192747.
|
[12] |
EKREM E and ULUKUS S. Capacity-equivocation region of the Gaussian MIMO wiretap channel[J]. IEEE Transactions on Information Theory, 2012, 58(9): 5699-5710. doi: 10.1109/ TIT.2012.2204534.
|
[13] |
KHODAKARAMI H and LAHOUTI F. Link adaptation with untrusted relay assignment: design and performance analysis[J]. IEEE Transactions on Communications, 2013, 61(12): 4874-4883. doi: 10.1109/TCOMM.2013.111513. 120888.
|
[14] |
LIU J, CHEN W, CAO Z, et al. Cooperative beamforming for cognitive radio networks: A cross-layer design[J]. IEEE Transactions on Communications, 2012, 60(5): 1420-1431. doi: 10.1109/TCOMM.2012.031712.100284A.
|
[15] |
CHEN W, LETAIEF K B, and CAO Z. Buffer-aware network coding for wireless networks[J]. IEEE/ACM Transactions on Networking, 2012, 20(5): 1389-1401. doi: 10.1109/TNET. 2011.2176958.
|
[16] |
LIU J, CHEN W, CAO Z, et al. Delay optimal scheduling for cognitive radios with cooperative beamforming: A structured matrix-geometric method[J]. IEEE Transactions on Mobile Computing, 2012, 11(8): 1412-1423. doi: 10.1109/TMC. 2011.153.
|
[17] |
DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492-498.
|
[18] |
PALOMAR D P and CHIANG M. A tutorial on decomposition methods for network utility maximization[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1439-1451. doi: 10.1109/JSAC.2006.879350.
|
[19] |
AN L T H and TAO P D. The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133(1/4): 23-46.
|
[20] |
NGO D T, KHAKUREL S, and LE-NGOC T. Joint subchannel assignment and power allocation for OFDMA femtocell networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 342-355. doi: 10.1109/TWC. 2013.111313.130645.
|
[21] |
RICHTER S, JONES C, and MORARI M. Computational complexity certification for real-time MPC with input constraints based on the fast gradient method[J]. IEEE Transactions on Automatic Control, 2012, 57(6): 1391-1403. doi: 10.1109/TAC.2011.2176389.
|
|
|
|