|
|
An Improved Matrix CFAR Detection Method Base on KL Divergence |
ZHAO Xinggang WANG Shouyong |
(Air Force Early Warning Academy, Wuhan 430019, China) |
|
|
Abstract The matrix CFAR detector is proposed according to information geometry theory, but its constant false alarm property is not analysed, and the matrix CFAR’s detection performance still needs to be improved. Firstly, the matrix CFAR’s constant false alarm property is analysed according to the normal law on matrix manifold, on this basis an improved matrix CFAR detector is proposed with replacing the geodesic distance with KULLBACK-LEIBLER Divergence (KLD). Finally, simulation experiments verify that the improved method has better detection performance.
|
Received: 10 June 2015
Published: 03 February 2016
|
|
Fund: The National Natural Science Foundation of China (61179014), Youth Science Fund Project (61302193) |
Corresponding Authors:
ZHAO Xinggang
E-mail: 565484636@qq.com
|
|
|
|
[1] |
RAO C. Information and accuracy attainable in the estimation of statistical parameters[J]. Bulletin of the Calcutta Mathematical Society, 1945, 37(2): 81-91.
|
[2] |
CHENTSOV N N. Statistical Decision Rules and Optimal Inference[M]. Rhode Island, USA: American Mathematical Society, 1982: 55-60.
|
[3] |
EFRON B. Defining the curvature of a statistical problem (with applications to second order efficiency)[J]. The Annals of Statistics, 1975, 3(6): 1189-1242.
|
[4] |
AMARI S and NAGAOKA H. Methods of Information Geometry[M]. New York: Oxford University Press, 2000: 87-96.
|
[5] |
MARCELO P, Hadj B, and STEVE M.Exploiting information geometry to improve the convergence properties of variational active contours[J]. IEEE Jounal of Selected Topics in Signal Processing, 2013, 7(4): 700-707.
|
[6] |
赵兴刚, 王首勇. 雷达目标检测的信息几何方法[J]. 信号处理, 2015, 31(6): 631-637.
|
|
ZHAO Xinggang and WANG Shouyong. Information geometry method of radar target detection[J]. Signal Processing, 2015, 31(6): 631-637.
|
[7] |
BARBARESCO F. Radar detection for non-stationary time-Doppler signal based on Fréchet distance of geodesic curves on covariance matrix information geometry manifold [C]. 14th International Radar Symposium, German, 2013: 307-312.
|
[8] |
LE Y, ARNAUDON M, and BARBARESCO F. Riemannian median, geometry of covariance matrices and radar target detection[C]. 7th European Radar Conference, Paris, 2010: 415-418.
|
[9] |
BARBARESCO F. Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar[C]. IEEE Radar Conference, Rome, Italy, 2008: 523-530.
|
[10] |
孙华飞, 彭林玉, 张真宁. 信息几何及其应用[J]. 数学进展, 2011, 40(3): 257-269.
|
|
SUN Huafei, PENG Linyu and ZHANG Zhenning. Inforamtion geometry and its application[J]. Advances in Mathematics, 2011, 40(3): 257-269.
|
[11] |
AMARI S. Information geometry of positive measures and positive-definite matrices: decomposable dually flat structure [J]. Entopy, 2014, 16(5): 2131-2145.
|
[12] |
BARBARESCO F. Information Intrinsic Geometry Flows[C]. MaxEnt’06 Conference, Paris, 2006: 133-146.
|
[13] |
LENGLET M and ROUSSON R. Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing[J]. Journal of Mathematical Imaging and Vision, 2006, 25(3): 423-444.
|
[14] |
郑作虎, 王首勇. 基于Alpha稳定分布杂波模型的雷达目标检测方法[J]. 电子与信息学报, 2014, 36(12): 2963-2968. doi: 10.3724/SP.J.1146.2014.00072.
|
|
ZHENG Zuohu and WANG Shouyong. Radar target detection method based on the alpha-stable distribution clutter model[J]. Journal of Electronics & Information Technology, 2014, 36(12): 2963-2968. doi: 10.3724/SP. J.1146.2014.00072.
|
[15] |
KULLBACK S. Information Theory and Statistics[M]. New York: Dover Publications, 1968: 162-188.
|
[16] |
严俊坤, 刘红亮, 戴奉周, 等. 一种具有恒虚警性质的检测跟踪联合处理算法[J]. 电子与信息学报, 2014, 36(11): 2666-2671. doi: 10.3724/SP.J.1146.2013.01925.
|
|
YAN Junkun, LIU Hongliang, and DAI Fengzhou. Joint detection and tracking processing algorithm with constant false alarm rate property[J]. Journal of Electronics & Information Technology, 2014, 36(11): 2666-2671. doi: 10.3724/SP.J.1146.2013.01925.
|
|
|
|