|
|
Theory on the Structure and Coloring of Maximal Planar Graphs (1)Recursion Formula of Chromatic Polynomial and FourColor Conjecture |
XU Jin |
(School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China)
(Key Laboratory of High Confidence Software Technologies, Peking University, Beijing 100871, China) |
|
|
Abstract In this paper, two recursion formulae of chromatic polynomial of a maximal planar graph $G$ are obtained: when $\delta(G)=4$, let $W_4^\nu$ be a 4-wheel of $G$ with wheel-center $\nu$ and wheel-cycle $\nu_1\nu_2\nu_3\nu_4\nu_1$, then $f(G,4)=f((G,4)\circ{\nu_1,\nu_3},4)+ f((G,4)\circ{\nu_2,\nu_4},4)$; when $\delta(G)=5$, let $W_5^\nu$ a 5-wheel of $G$ with wheel-center $\nu$ and wheel-cycle $\nu_1\nu_2\nu_3\nu_4\nu_5\nu_1$, then $f(G,4)=[f(G_1,4)-f(G_1\cup{\nu_1\nu_4,\nu_1\nu_3},4)] +[f(G_2,4)-f(G_2\cup {\nu_3\nu_1,\nu_3\nu_5},4)]+ [f(G_3,4)-f(G_3\cup {\nu_1\nu_4},4)]$, $G_1=(G-\nu)\circ{\nu_2,\nu_5}$, $G_2=(G-\nu)\circ{\nu_2,\nu_4}$, $G_3=(G-\nu)\circ{\nu_3,\nu_5}$, where $“\circ”$ denotes the operation of vertex contraction. Moreover, the application of the above formulae to the proof of Four-Color Conjecture is investigated. By using these formulae, the proof of Four-Color Conjecture boils down to the study on a special class of graphs, viz., 4-chromatic-funnel pseudo uniquely-4-colorable maximal planar graphs.
|
Received: 15 January 2016
Published: 22 January 2016
|
|
Fund: The National 973 Program of China (2013CB329600), The National Natural Science Foundation of China (61472012, 6152046, 6152012, 61572492, 61372191, 61472012) |
Corresponding Authors:
XU Jin
E-mail: jxu@pku.edu.cn
|
About author:: XU Jin: Born in 1959, Professor. His main research interests include graph theory and combinatorial optimization, biocomputing, social networks and information security. |
|
|
|
[1] |
JENSEN T R and TOFT B. Graph Coloring Problems[M]. New York: John Wiley & Sons, 1995: 48-49.
|
[2] |
DÍAZ J, PETIT J, and SERNA M. A survey of graph layout problems[J]. ACM Computing Surveys, 2002, 34(3): 313-355.
|
[3] |
BRODER A, KUMAR R, MAGHOUL F, et al. Graph structure in the Web[J]. Computer Networks, 2000, 33(1-6): 309-320.
|
[4] |
许进, 李泽鹏, 朱恩强. 极大平面图的研究进展[J]. 计算机学报, 2015, 38(7): 1680-1704.
|
|
XU Jin, LI Zepeng, and ZHU Enqiang. Research progress on the theory of maximal planar graphs[J]. Chinese Journal of Computers, 2015, 38(7): 1680-1704.
|
[5] |
KEMPE A B. On the geographical problem of the four colors [J]. American Journal of Mathematics, 1879, 2(3): 193-200.
|
[6] |
HEAWOOD P J. Map colour theorem[J]. Quarterly Journal of Mathematics, 1890, 24: 332-338.
|
[7] |
APPEL K and HAKEN W. The solution of the four-color map problem[J]. Science American, 1977, 237(4): 108-121.
|
[8] |
APPEL K and HAKEN W. Every planar map is four colorable, I: Discharging[J]. Illinois Journal of Mathematics, 1977, 21(3): 429-490.
|
[9] |
APPEL K, HAKEN W, and KOCH J. Every planar map is four-colorable, II: Reducibility[J]. Illinois Journal of Mathematics, 1977, 21(3): 491-567.
|
[10] |
ROBERTSON N, SANDERS D P, SEYMOUR P, et al. A new proof of the four colour theorem[J]. Electronic Research Announcements American Mathematical Society, 1996, 2: 17-25.
|
[11] |
ROBERTSON N, SANDERS D P, SEYMOUR P D, et al. The four color theorem[J]. Journal of Combinatorial Theory, Series B, 1997, 70(1): 2-44.
|
[12] |
WERNICKE P. den kartographischen Vierfarbensatz [J]. Mathematische Annalen, 1904, 58(3): 413-426.
|
[13] |
BIRKHOFF G D. The reducibility of maps[J]. American Journal of Mathematics, 1913, 35(2): 115-128.
|
[14] |
HEESCH H. Untersuchungen Zum Vierfarbenproblem[M]. Mannheim/Wien/Z?urich: Bibliographisches Institut, 1969: 4-12.
|
[15] |
FRANKLIN P. The four color problem[J]. American Journal of Mathematics, 1922, 44(3): 225-236.
|
[16] |
FRANKLIN P. Note on the four color problem[J]. Journal of Mathematical Physics, 1938, 16: 172-184.
|
[17] |
REYNOLDS C. On the problem of coloring maps in four colors[J]. Annals of Mathematics, 1926-27, 28(1-4): 477-492.
|
[18] |
WINN C E. On the minimum number of polygons in an irreducible map[J]. American Journal of Mathematics, 1940, 62(1): 406-416.
|
[19] |
ORE O and STEMPLE J. Numerical calculations on the four-color problem[J]. Journal of Combinatorial Theory, 1970, 8(1): 65-78.
|
[20] |
MAYER J. Une propriètè des graphes minimaux dans le probl?eme des quatre couleurs[J]. Problèmes Combinatoires et Thorie des Graphes, Colloques Internationaux CNRS, 1978, 260: 291-295.
|
[21] |
TAIT P G. Remarks on the colouring of maps[J]. Proceedings of the Royal Society of Edinburgh, 1880, 10: 501-516.
|
[22] |
PETERSEN J. Surle théorème de Tait[J]. L'intermédiaire des Mathématiciens, 1898, 5: 225-227.
|
[23] |
TUTTE W T. On Hamiltonian circuits[J]. Journal of the London Mathematical Society, 1946, 21: 98-101.
|
[24] |
GRINBERG E J. Plane homogeneous graphs of degree three without Hamiltonian circuits[J]. Latvian Math Yearbook, 1968, 5: 51-58.
|
[25] |
BIRKHOFF G D. A determinantal formula for the number of ways of coloring a map[J]. Annals of Mathematics, 1912, 14: 42-46.
|
[26] |
BIRKHOFF G D and LEWIS D. Chromatic polynomials[J]. Transactions of the American Mathematical Society, 1946, 60: 355-451.
|
[27] |
DONG F M, KOH K M, and TEO K L. Chromatic Polynomials and Chromaticity of Graphs[M]. World Scientific, Singapore, 2005: 23-215.
|
[28] |
TUTTE W T. On chromatic polynomials and the golden ratio[J]. Journal of Combinatorial Theory, 1970, 9(3): 289-296.
|
[29] |
TUTTE W T. Chromatic sums for planar triangulations, V: Special equations[J]. Canadian Journal of Mathematics, 1974, 26: 893-907.
|
[30] |
READ R C. An introduction to chromatic polynomials[J]. Journal of Combinatorial Theory, 1968, 4(1): 52-71.
|
[31] |
WHITNEY H. On the coloring of graphs[J]. Annals of Mathematics, 1932, 33(4): 688-718.
|
[32] |
XU Jin. Recursive formula for calculating the chromatic polynomial of a graph by vertex deletion[J]. Acta Mathematica Scientia Series B, 2004, 24B(4): 577-582.
|
[33] |
XU Jin and LIU Z. The chromatic polynomial between graph and its complementAbout Akiyama and Hararys, open problem[J]. Graph and Combinatorics, 1995, 11: 337-345.
|
[34] |
ZYKOV A A. On some properties of linear complexes[J]. Math Ussr Sbornik, 1949, 24(66): 163-188 (in Russian); English Translation in Transactions of the American Mathematical Society, 1952, 79.
|
|
|
|