|
|
A Joint Estimation Algorithm of TDOA and FDOA Based on Wavelet Threshold De-noising and Conjugate Fuzzy Function |
DOU Huijing WANG Qianlong ZHANG Xue |
(College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing 100124, China) |
|
|
Abstract To solve the problem that the second-order fuzzy function can not deal with related noise, as well as the problem of large computation based on fourth-order cumulants joint estimation algorithm, this paper proposes a new joint estimation algorithm of TDOA and FDOA by using wavelet thresholding denoising method combined with characteristics of non-circular signals. The method operates firstly wavelet thresholding denoising for the received signal, then constructs conjugate fuzzy function, and finally two-dimensional search is made to obtain the time difference and frequency difference parameters. The simulation experimental results under different signal-to- noise ratio show that the proposed algorithm can not only suppress correlated noise, but also has relatively lower computational complexity and also can make accurate estimation under low signal-to-noise ratio.
|
Received: 23 July 2015
Published: 14 January 2016
|
|
Fund: The National Natural Science Foundation of China (61171137), Beijing Municipal Education Commission Research and Development Programs (KM201210005001) |
Corresponding Authors:
DOU Huijing
E-mail: dhuijing@bjut.edu.cn
|
|
|
|
[1] |
WU Shilong, LUO Jingqing, and GONG Liangliang. Joint FDOA and TDOA location algorithm and performance analysis of dual-satellite formations[C]. 2010 2nd International Conference on Signal Processing Systems (ICSPS), Dalian, 2010, V2-339-V2-342. doi: 10.1109/ICSPS. 2010.5555463.
|
[2] |
YEREDOR A. Quantifying the advantages of joint processing in TDOA estimation[C]. IEEE 7th Sensor Array and Multichannal Signal Processing Workshop (SAM), Hoboken, NJ, 2012: 205-208. doi: 10.1109/SAM. 2012. 6250468.
|
[3] |
DANDAWATR A V and GIANNAKIS G B. Differential delay-Doppler estimation using second- and higher-order ambiguity functions[J]. IEE Proceedings F, Radar and Signal Processing, 1993, 140(6): 410-418.
|
[4] |
蒋柏峰, 吕晓德, 赵耀东, 等. 一种基于DTTB信号的无源相干雷达模糊函数快速算法[J]. 电子与信息学报, 2013, 35(3): 589-594. doi: 10.3724/SP.J.1146.2012.00900.
|
|
JIANG Baifeng, LV Xiaode, ZHAO Yaodong, et al. A fast algorithm of ambiguity function for passive coherent radar based on DTTB signal[J]. Journal of Electronics & Information Technology, 2013, 35(3): 589-594. doi: 10.3724/ SP.J.1146.2012.00900.
|
[5] |
柏如龙, 刘承禹, 李鑫. CDMA信号时差频差联合估计算法研究[J]. 无线电工程, 2013, 43(6): 21-25.
|
|
BAI Rulong, LIU Chengyu, and LI Xin. Research on TDOA/FDOA joint estimation algorithm for CDMA signals[J]. Radio Engineering, 2013, 43(6): 21-25.
|
[6] |
杨宇翔, 夏畅雄, 同武勤. 高低轨双星定位中的时变时频差参数估计[J]. 信号处理, 2012, 28(10): 1465-1474.
|
|
YANG Yuxiang, XIA Changxiong, and TONG Wuqin. Estimation of the time varying TDOA and FDOA in GEO-LEO dual-satellites location system[J]. Signal Processing, 2012, 28(10): 1465-1474.
|
[7] |
张威, 边东明, 张更新, 等. 基于四阶互模糊函数的TDOA/FDOA参数估计研究[J]. 无线电通信技术, 2013, 39(1): 28-31.
|
|
ZHANG Wei, BIAN Dongming, ZHANG Gengxin, et al. Based on the fourth-order mutual fuzzy function of TDOA/FDOA parameter estimation research[J]. Radio Communications Technology, 2013, 39(1): 28-31.
|
[8] |
WANG Hongzhi, XU Peixin, and BI Aiqi. A new adaptive time delay estimation using fourth-order cumulants based on polarity iterative[C]. 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE), Sopporo, 2014, 1: 257-259.
|
[9] |
侯慧娟, 盛戈皞, 朱文俊, 等. 基于高阶累积量的局部放电超高频信号时延估计算法[J]. 高电压技术, 2013, 39(2): 342-347. doi: 10.3969/j.issn.1003-6520.2013.02.013.
|
|
HOU Huijuan, SHENG Gehao, ZHU Wenjun, et al. Time-delay estimation algorithm of partial deischarge ultra high frequency signals based on higher-order cunmulant[J]. Voltage Engineering, 2013, 39(2): 342-347. doi: 10.3969/ j.issn.1003-6520.2013.02.013.
|
[10] |
李文雪. 双星干扰源定位系统时差频差参数估计研究[D].[硕士论文], 北京工业大学, 2014.
|
|
LI Wenxue. Research on TDOA&FDOA estimation based on double satellite interference localization system[D]. [Master dissertation], Beijing University of Technology, 2014.
|
[11] |
文飞. 非圆信号参数估计方法研究[D]. [博士论文], 电子科技大学, 2014.
|
|
WEN Fei. Reserch on the non-circular signal parameter estimation method[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2014.
|
[12] |
YAO Guangxiang, LIU Zhiwen, and XU You-gen. TDOA/FDOA joint estimation in a correlated noise environment[C]. IEEE International Symposium on Microwave, Antenna, Propagation and Technologies, Beijing, 2005, 1: 831-834.
|
[13] |
齐晓东, 陆春伟, 徐友根, 等. 基于共轭模糊函数的时差-频差联合估计方法[J]. 航天电子对抗, 2009, 25(6): 58-61.
|
|
QI Xiaodong, LU Chunwei, XU Yougen, et al. TDOA-FDOA estimation with conjugate ambiguity function[J]. Aerospace Electronic Warfare, 2009, 25(6): 58-61.
|
[14] |
DOU Hui-jing, LEI Qian, CHENG Jun, et al. Research on TDOA parameters estimation for satellite interference location[C]. 2012 IEEE 11th International Conference on Signal Processing (ICSP), Beijing, 2012, 1: 259-262.
|
[15] |
吴光文, 王昌明, 包建东, 等. 基于自适应阈值函数的小波阈值去噪方法[J]. 电子与信息学报, 2014, 36(6): 1340-1347. doi: 10.3724/SP.J.1146.2013.00798.
|
|
WU Wenguang, WANG Changming, BAO Jiandong, et al. A wavelet threshold de-noising algorithm based on adaptive threshold function[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1340-1347. doi: 10.3724/SP.J. 1146.2013.00798.
|
|
|
|