|
|
Certificateless Encryption over NTRU Lattices |
CHEN Hu HU Yupu |
(State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China) |
|
|
Abstract To lower the sizes of keys, a certificateless encryption scheme is put forward by using a trapdoor sampling algorithm over a selected NTRU lattice to extract partial private keys and using Ring Learning With Errors (RLWE) problem to generate public keys. Its security is based on both assumptions of the decisional ring learning with errors problem and the decisional Small Polynomial Ratio (SPR) problem. To further improve efficiency, a certificateless parallel encryption scheme with more efficient algorithms only using arithmetic in integers is also given by respectively using the Chinese Remainder Theorem (CRT) to decompose the enlarged plaintext space into the product of distinct prime ideals and to break down the ring, over which encryption operations work, for obtaining the Chinese Remainder basis. The given results show that the proposed schemes are characterized by low computation complexity and small communication complexity.
|
Received: 01 April 2015
Published: 04 January 2016
|
|
Fund: The National Natural Science Foundation of China (61472309, 61173151), The Natural Science Foundation of Anhui Province (1208085MF108, KJ2012B157) |
Corresponding Authors:
CHEN Hu
E-mail: chenhuchh@163.com
|
|
|
|
[1] |
GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. Proceedings of the 40th ACM Symposium on Theory of Computing (STOC08), Victoria, Canada, 2008: 197-206. doi: 10.1145/1374376.1374407.
|
[2] |
AGRAWAL S, BONEH D, and BOYEN X. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE[J]. LNCS, 2010, 6223: 98-115. doi: 10.1007 /978-3-642-14623-7_6.
|
[3] |
DUCAS L, LYUBASHEVSKY V, and PREST T. Efficient identity-based encryption over NTRU lattices[J]. LNCS, 2014, 8874: 22-41. doi: 10.1007/978-3-662-45608-8_2.
|
[4] |
BRAKERSKI Z, GENTRY C, and VAIKUNTANATHAN V. Fully homomorphic encryption without Bootstrapping[C]. Proceedings of the 3rd Innovations in Theoretical Computer Science (ITCS) Conference, Cambridge, Massachusetts, 2012: 309-325.
|
[5] |
LOPEZ-ALT A, TROMER E, and VAIKUNTANATHAN V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption[C]. Proceedings of the 44th ACM Symposium on Theory of Computing (STOC12), New York, USA, 2012: 1219-1234. doi: 10.1145/2213977.2214086.
|
[6] |
BRAKERSKI?Z and VAIKUNTANATHAN V.? Lattice- based? FHE?as?secure?as?PKE[C]. Proceedings of the 5rd Innovations in Theoretical Computer Science (ITCS) Conference, Princeton, New Jersey, 2014: 1-12.
|
[7] |
MICCIANCIO D and PEIKERT C. Trapdoor for lattices: simpler, tighter, faster, smaller[J]. LNCS, 2012, 7237: 738-755.
|
[8] |
JARVIS K and NEVINS M. ETRU: NTRU over the Eisenstein integers[J]. Designs, Codes and Cryptography, 2015, 74(1): 219-242.
|
[9] |
BI J G and CHENG Q. Lower bounds of shortest vector lengths in random NTRU lattices[J]. Theoretical Computer Science, 2014, 560(2): 121-130. doi: 10.1007/978-3-642- 29952-0_18.
|
[10] |
SEPAHI R, STEINFELD R, and PIEPRZYK J. Lattice- based certificateless public-key encryption in the standard model[J]. International Journal of Information Security, 2014,?13(4):?315-333. doi: 10.1007/s10207-013-0215-8.
|
[11] |
JIANG Mingming, HU Yupu, LEI Hao, et al. Lattice-based certificateless encryption scheme[J]. Frontiers of Computer Science, 2014,?8(5):?828-836. doi: 10.1007/s11704-014-3187-6.
|
[12] |
AL-RIYAMI S S and PATERSON K G. Certificateless public key cryptography[J]. LNCS, 2003, 2894: 452-473.
|
[13] |
DENT A. A survey of Certificateless encryption schemes and security models[J]. International Journal of Information Security, 2008,?7(5):?347-377. doi: 10.1007/s10207-008-0055-0.
|
[14] |
陈虎, 张福泰, 宋如顺. 可证安全的无证书代理签名方案[J]. 软件学报, 2009, 20(3): 692-701. doi: 10.3724/SP.J.1001.2009. 00574.
|
|
CHEN Hu, ZHANG Futai, and SONG Rushun. Certificateless proxy signature scheme with provable security[J]. Journal of Software, 2009, 20(3): 692-701. doi: 10.3724/SP.J.1001.2009.00574.
|
[15] |
ALWEN J and PEIKERT C. Generating shorter bases for hard random lattices[J]. Theory of Computing Systems, 2011, 48(3): 535-553.
|
[16] |
LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings[J]. Journal of the ACM, 2013, 60(6): 43:1-43:35.
|
[17] |
STEHLE D?and STEINFELD R. Making NTRU as secure as worst-case problems over ideal lattices[J]. LNCS, 2011, 6632: 27-47.
|
[18] |
LYUBASHEVSKY V, PEIKERT C, and REGEV O. A toolkit for ring-LWE cryptography[J]. LNCS, 2013, 7881: 35-54.
|
[19] |
LINDNER R and PEIKERT C. Better key sizes (and attacks) for LWE-based encryption[J]. LNCS, 2011, 6558: 319-339. doi: 10.1007/978-3-642-19074-2_21.
|
|
|
|