|
|
Backscatter Analysis of Lossy Dielectric Sea Surface Using SMCG-PBTG Method--Comparison with Experimental Data |
SU Xiang① WU Zhensen① WANG Xiaobin② DAI Fei② |
①(School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China)
②(The State Key Laboratory for Electromagnetic Characters of Environment, Shanghai 200438, China) |
|
|
Abstract The traditional numerical method of calculating electromagnetic scattering from the dielectric sea surface requires large amounts of memory and computation time as irradiated area increasing rapidly at low grazing angles. The method of Sparse Matrix Canonical Grid (SMCG) computes the product of the Taylor expanded flat surface matrix and the surface current column vector in far field by the Fast Fourier Transform (FFT), which decreases the computation complexity efficiently. According to the properties of the Green’s functions of lossy dielectric and free space, the Physics-Based Two-Grid (PBTG) calculates surface field solutions on the both of dense and coarse grids, which reduces the amounts of memory required. Predictions of an exact numerical model using SMCG-PBTG based on Monte Carlo simulation are compared with experimental data. Experimental data is obtained from wave tank experiments in which the backscattering patterns of 1D sea surfaces with PM spectrum at S- and Ku-band are measured. The sea surfaces corresponding to low and moderate windspeed can be directly simulated in wave tank, and the scale model provides an alternative approach for measuring scattering from sea surfaces corresponding to high windspeed. A comparison of the absolute value of the backscattering coefficient shows the theory and experiment to be in good agreement. Results show that the correlation lengths and scattering behaviors are significantly different under the different windspeed.
|
Received: 08 April 2015
Published: 18 December 2015
|
|
Fund: The National Natural Science Foundation of China (61471242) |
Corresponding Authors:
WU Zhensen
E-mail: wuzhs@mail.xidian.edu.cn
|
|
|
|
[1] |
BOURLIER C, LI H, and PINEL N. Low-grazing angle
|
|
propagation and scattering above the sea surface in the presence of a duct jointly solved by boundary integral equations[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 667-677. doi: 10.1109/TAP. 2014.2379945.
|
[2] |
AFIFI S, DUSSEAUX R, and BERROUK A. Electromagnetic scattering from 3D layered structures with randomly rough interfaces: analysis with the small perturbation method and the small slope approximation[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5200-5208. doi: 10.1109/TAP.2014.2341704.
|
[3] |
李晓峰, 谢拥军, 陈博韬, 等. 半空间复杂目标的高频分析方法[J]. 电子与信息学报, 2010, 32(2): 449-453. doi: 10.3724/ SP.J.1146.2009.00096.
|
|
LI Xiaofeng, XIE Yongjun, CHEN Botao, et al. High-frequency analysis on scattering from complex conductive targets in half space[J]. Journal of Electronics & Information Technology, 2010, 32(2): 449-453. doi: 10.3724/SP.J.1146.2009.00096.
|
[4] |
WU Zhensen, ZHANG Jinpeng, and GUO Lixin. An improved two-scale model with volumes scattering for the dynamic ocean surface[J]. Progress in Electromagnetics Research, 2009, 89(1): 39-56.
|
[5] |
范天奇, 郭立新, 金健, 等. 含泡沫面元模型的海面电磁散射研究[J]. 物理学报, 2014, 63(21): 110-119. doi: 10.7498/ aps.63.214104.
|
|
FAN Tianqi, GUO Lixin, JIN Jian, et al. Research on the facet model of electromagnetic scatterings from rough sea surface with foams[J]. Acta Physica Sinica, 2014, 63(21): 110-119. doi: 10.7498/aps.63.214104.
|
[6] |
MICHIEL B, FOSTIER J, BOGAERT I, et al. Full-wave simulations of electromagnetic scattering problems with billions of unknowns[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 796-799. doi: 10.1109/TAP. 2014.2380438.
|
[7] |
姬伟杰, 童创明. 快速计算一维分层粗糙面之间金属目标复合散射的互耦迭代算法[J]. 电子与信息学报, 2010, 32(10): 2479-2484. doi: 10.3724/SP.J.1146.2009.01208.
|
|
JI Weijie, and TONG Chuangming. EM scattering from a PEC target below the layered rough surface based on the cross coupling iterative approach[J]. Journal of Electronics & Information Technology, 2010, 32(10): 2479-2484. doi: 10.3724/SP.J.1146.2009.01208.
|
[8] |
陈新蕾, 邓小乔, 李茁, 等. 金属介质混合目标散射分析的快速偶极子法[J]. 电子与信息学报, 2011, 33(11): 2790-2794. doi: 10.3724/SP.J.1146.2011.00398.
|
|
CHEN Xinlei, DENG Xiaoqiao, LI Zhuo, et al.. Electromagnetic scattering by mixed conducting and dielectric objects analysis using fast dipole method[J]. Journal of Electronics & Information Technology, 2011, 33(11): 2790-2794. doi: 10.3724/SP.J.1146.2011.00398.
|
[9] |
王仲根, 孙玉发, 王国华. 应用改进的快速偶极子法和特征基函数法分析导体目标电磁散射特性[J]. 电子与信息学报, 2013, 35(9): 2272-2277. doi: 10.3724/SP.J.1146.2013.00027.
|
|
WANG Zhonggen, SUN Yufa, and WANG Guohua. Analysis of electromagnetic scattering characteristics from conducting targets using improved fast dipole method and characteristic basis function method[J]. Journal of Electronics & Information Technology, 2013, 35(9): 2272-2277. doi: 10.3724/SP.J.1146.2013.00027.
|
[10] |
NIE Zaiping, MA Wenmin, REN Yi, et al. A wideband electromagnetic scattering analysis using MLFMA with higher order hierarchical vector basis functions[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3169-3178. doi: 10.1109/TAP.2009.2028497.
|
[11] |
BOURLIER C, BELLEZ S, LI H, et al. Sub-domain decomposition iterative method combined with ACA: an efficient technique for the scattering from a large highly conducting rough sea surface[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(2): 659-666. doi: 10.1109/TAP.2014.2373395.
|
[12] |
TSANG L, CHAN C H, PAK K, et al. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(8): 851-859.
|
[13] |
JOHNSON J T. A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 114-120.
|
[14] |
姬伟杰, 童创明. 三维目标与粗糙面复合散射的广义稀疏矩阵平面迭代及规范网格算法[J]. 物理学报, 2011, 60(1): 22-30.
|
|
JI Weijie and TONG Chuangming. Bistatic scattering from three-dimensional target on perfectly conducting rough surface by using G-SMFSIA/CAG[J]. Acta Physica Sinica, 2011, 60(1): 22-30.
|
[15] |
闫沛文, 童创明. 基于FGMRES-PBTG算法的介质粗糙面散射特性的模拟[J]. 电波科学学报, 2009, 24(1): 115-119.
|
|
YAN Peiwen and TONG Chuangming. Simulations of scattering characteristic of lossy dielectric surfaces based on FGMRES-PBTG method[J]. Chinese Journal of Radio Science, 2009, 24(1): 115-119.
|
[16] |
BRANCH R, CHICKADEL C C, and JESSUP A T. Thermal infrared multipath reflection from breaking waves observed at large incidence angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 249-256. doi: 10.1109/TGRS.2013.2238241
|
[17] |
AGHABARATI A and WEBB J P. Algebraic multigrid combined with domain decomposition for the finite element analysis of large scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 404-408. doi: 10.1109/TAP.2014.2365047.
|
[18] |
VALENZUELA G R. Theories for the interaction of electromagnetic and oceanic waves — a review[J]. Boundary-Layer Meteorology, 1978, 13(C3): 61-85.
|
[19] |
岳慧, 王晓冰, 薛正国. 粗糙海面的电磁散射缩比模拟测量的若干基本问题[J]. 制导与引信, 2010, 31(4): 30-34.
|
|
YUE Hui, WANG Xiaobing, and XUE Zhengguo. Some basic issues for scaled rough sea surface electromagnetic measurement[J]. Guidance & Fuze, 2010, 31(4): 30-34.
|
[20] |
MEISSNER T and WENTZ F J. The complex dielectric constant of pure and sea water from microwave satellite observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1836-1849. doi: 10.1109/ TGRS.2004.831888.
|
[21] |
WEST J C, STURM J M, and JA S. Low-grazing scattering from breaking water waves using an impedance boundary MM/GTD approach[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 93-100.
|
|
|
|