|
|
Low Rank Tensor Completion for Recovering Missing Data in Multi-channel Audio Signal |
YANG Lidong①② WANG Jing① XIE Xiang① ZHAO Yi① KUANG Jingming① |
①(School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)
②(School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China) |
|
|
Abstract The data maybe miss due to problems in the acquisition, compression or transmission process of multi- channel audio signal. In order to take audiences real auditory sense, an approach of signal recovery based on low rank tensor completion is proposed. First, multi-channel audio signal is represented as a signal tensor. Second, tensor completion is formulated as a convex optimization problem. A closed form for augmented Lagrangian function is obtained via relaxation technique and separation of variables technique. At last, the audio tensor is recovered by alternating iteration. In experiments of varying number of missing entries, the comparisons show that the proposed method is more accurate than linear prediction and CANDECOMP/PARAFAC weighted optimization. The results of multiple stimuli with hidden reference and anchor indicate that low rank tensor completion method is validated for multi-channel audio signal recovery. The better auditory effects are obtained by recovered audio.
|
Received: 18 May 2015
Published: 04 December 2015
|
|
Fund: The National Natural Science Foundation of China (61473041), Scientific Research Project in Colleges and Universities of Inner Mongolia (NJZY13139) |
Corresponding Authors:
WANG Jing
E-mail: wangjing@bit.edu.cn
|
|
|
|
[1] |
王磊, 周乐囡, 姬红兵, 等. 一种面向信号分类的匹配追踪新方法[J]. 电子与信息学报, 2014, 36(6): 1299-1306. doi: 10.3724/SP.J.1146.2013.00942.
|
|
WANG Lei, ZHOU Lenan, JI Hongbing, et al. A new matching pursuit algorithm for signal classification[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1299-1306. doi:10.3724/SP.J.1146.2013.00942.
|
[2] |
VASEGHI S and FRANYLING C. Restoration of old gramophone recordings[J]. AES Journal of the Audio Engineering Society, 1992, 40(10): 791-801.
|
[3] |
高悦, 陈砚圃, 闵刚, 等. 基于线性预测分析和差分变换的语音信号压缩感知[J]. 电子与信息学报, 2012, 34(6): 1408-1413. doi:10.3724/SP.J.1146.2011.01001.
|
|
GAO Yue, CHEN Yanpu, MIN Gang, et al. Compressed sensing of speech signals based on linear prediction coefficients and difference transformation[J]. Journal of Electronics & Information Technology, 2012, 34(6): 1408-1413. doi:10.3724/SP.J.1146.2011.01001.
|
[4] |
COCCHI G and UNCINI A. Subbands audio signal recovering using neural nonlinear prediction[C]. Proceedings of the 2001 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, UT, USA, 2001: 1289-1292.
|
[5] |
朱墨, 吴国清, 郭新毅. 基于盲解卷积的水声信号恢复技术[J].应用声学, 2011, 30(3): 177-186. doi:10.3969/j.issn. 1000- 310X.2011.03.003.
|
|
ZHU Mo, WU Guoqing, and GUO Xinyi. An underwater signal recovery technique based on blind deconvolution[J]. Journal of Applied Acoustics, 2011, 30(3): 177-186. doi: 10.3969/j.issn.1000-310X.2011.03.003.
|
[6] |
ACAR E, DUNLAVY D M, KOLDA T G, et al. Scalable tensor factorizations with missing data[C]. Proceedings of the 10th SIAM International Conference on Data Mining, Columbus, OH, United States, 2010: 701-712.
|
[7] |
ZHAO Qibin, ZHANG Liqing, and CICHOCKI A. Bayesian CP factorization of incomplete tensors with automatic rank determination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1751-1763. doi: 10.1109/TPAMI.2015.2392756.
|
[8] |
TAN Huachun, WU Yuankai, FENG Guangdong, et al. A new traffic prediction method based on dynamic tensor completion[J]. Procedia-Social and Behavioral Sciences, 2013, 96(8): 2431-2442. doi: 10.1016/j.sbspro.2013.08.272.
|
[9] |
LIU Yuanyuan and SHANG Fanhua. An efficient matrix factorization method for tensor completion[J]. IEEE Signal Processing Letters, 2013, 20(4): 307-310. doi:10.1109/LSP. 2013.2245416.
|
[10] |
刘园园. 快速低秩矩阵与张量恢复的算法研究[D]. [博士论文] ,西安电子科技大学, 2013. doi: 10.7666/d.D363665.
|
|
LIU Yuanyuan. Algorithm research of fast low-rank matrix and tensor recovery[D]. [Ph.D. dissertation], Xidian University, 2013. doi: 10.7666/d.D363665.
|
[11] |
樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO 雷达目标多参数估计方法[J]. 电子与信息学报, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
|
|
FAN Jinyu, GU Hong, SU Weimin, et al. Co-prime MIMO radar multi-parameter estimation based on tensor decomposition[J]. Journal of Electronics & Information Technology, 2015, 37(4): 933-938. doi: 10.11999/JEIT140826.
|
[12] |
CICHOCKI A, ZDUNEK R, PHAN A H, et al. Nonnegative matrix and tensor factorizations[M]. Chichester, WS: John Wiley & Sons, 2009: 28-31.
|
[13] |
LERMAN G and ZHANG T. Robust recovery of multiple subspaces by geometric lp minimization[J]. Annals of Statistics, 2011, 39(5): 2686-2715. doi: 10.1214/11-AOS914.
|
[14] |
CHEN Y, HSU C, and LIAO H M. Simultaneous tensor decomposition and completion using factor priors[J]. IEEE Transactions on Software Engineering, 2014, 36(3): 577-591. doi: 10.1109/TPAMI.2013.164.
|
[15] |
RECHT B, FAZEL M, and PARRILO P. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471-501.
|
[16] |
LIU Ji, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-2121. doi:10.1109/TPAMI.20125.39.
|
[17] |
GANDY S, RECHT B, and YAMADA I. Tensor completion and low-n-rank tensor recovery via convex optimization[J]. Inverse Problems, 2011, 27(2): 25010-25028.
|
[18] |
KOLDA T G, BADER B, SUN Jimneg, et al. MATLAB tensor toolbox version 2.6[OL]. http://www.sandia.gov/~ tgkolda/ Tensor Toolbox/index-2.6.html, 2015.2.
|
|
|
|