|
|
Maximum Likelihood Decoding of Fountain Codes in Underwater Acoustic Communication |
WU Yanbo ZHU Min |
①(State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China)
②(Ocean Acoustic Technology Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China) |
|
|
Abstract Considering the characteristics of underwater acoustic communication, random linear fountain codes with maximum likelihood decoding are studied to correct erasure errors in the short packet transmission. In existing maximum likelihood decoding methods, processing begins when all the necessary blocks are available, resulting to the unacceptable decoding delay. An increment Gaussian elimination method is proposed to decrease the decoding delay by utilizing the time-slots of every block. The computation complexity is analyzed based on the principle of the probability distribution of the summation of binary random variables. The real-time ability of the proposed method is verified on the low-cost DSP chip for the underwater acoustic modem. The method is applicable to underwater transmissions of images, and sense data.
|
Received: 13 May 2015
Published: 04 December 2015
|
|
Fund: The National Natural Science Foundation of China (61471351), Preferred Foundation of Director of Institute of Acoustics, CAS (Y454101231) |
Corresponding Authors:
WU Yanbo
E-mail: wuyanbo@mail.ioa.ac.cn
|
|
|
|
[1] |
LUBY M. LT codes[C]. Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, 2002: 271-282. doi: 10.1109/SFCS.2002.1181950.
|
[2] |
SHOKROLLAHI A. Raptor codes[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2551-2567. doi: 10.1109/ TIT.2006.874390.
|
[3] |
HANZO L, MAUNDER R, CHEN H, et al. Hybrid-ARQ- aided short fountain codes designed for block-fading channels[J]. IEEE Transactions on Vehicular Technology, 2015. doi: 10.1109/TVT.2015.2388632.
|
[4] |
赵旦峰, 梁明珅, 段晋珏. 水声网络中喷泉码的应用研究现状与发展前景[J]. 系统工程与电子技术, 2014, 36(9): 1838-1843. doi: 10.3969/ J.ISSN.1001-506X.2014.09.27.
|
|
ZHAO Danfeng, LIANG Mingshen, and DUAN Jinjue. Survey of fountain codes in underwater acoustic sensor networks[J]. Systems Engineering and Electronics, 2014, 36(9): 1838-1843. doi: 10.3969/J.ISSN.1001-506X.2014.09.27.
|
[5] |
NICOPOLITIDIS P, PAPADIMITRIOU G I, and POMPORTSIS A S. Adaptive data broadcasting in underwater wireless networks[J]. IEEE Journal of Oceanic Engineering, 2010, 35(3): 623-634. doi: 10.1109/JOE.2010. 2049674.
|
[6] |
CHAN C Y M and MOTANI M. An integrated energy efficient data retrieval protocol for underwater delay tolerant networks[C]. Proceedings of the OCEANS, Aberdeen, 2007: 1-6. doi: 10.1109/OCEANSE.2007.4302341.
|
[7] |
CASARI P, ROSSI M, and ZORZI M. Towards optimal broadcasting policies for HARQ based on fountain codes in underwater networks[C]. Proceedings of the 2008 Fifth Annual Conference on Wireless on Demand Network Systems and Services, Garmisch-Partenkirchen, 2008: 11-19. doi: 10. 1109/WONS.2008.4459350.
|
[8] |
ZHOU Z, MO H, ZHU Y, et al. Fountain code based adaptive multi-hop reliable data transfer for underwater acoustic networks[C]. Proceedings of the 2012 IEEE International Conference on Communications, Ottawa, 2012: 6396-6400, doi: 10.1109/ICC.2012.6364846.
|
[9] |
CUI Y, QING J, GUAN Q, et al. Stochastically optimized fountain based transmissions over underwater acoustic channels[J]. IEEE Transactions on Vehicular Technology, 2014, 64(4): 2108-2112. doi: 10.1109/TVT.2013.01958.
|
[10] |
CHITRE M and SOH W S. Reliable point-to-point underwater acoustic data transfer: to juggle or not to juggle?[J]. IEEE Journal of Oceanic Engineering, 2015, 40(1): 93-103. doi: 10.1109/JOE.2014.2311692.
|
[11] |
SCHOTSCH B, SCHEPKER H, and VARY P. The performance of short random linear fountain codes under maximum likelihood decoding[C]. Proceedings of the 2011 IEEE International Conference on Communications, Kyoto, 2011: 1-5. doi: 10.1109/ICC.2011.5962476.
|
[12] |
MACKAY D J C. Fountain codes[J]. IEE Proceedings- Communications, 2005, 152(6): 1062-1068. doi: 10.1049/IP- COM: 20050237.
|
[13] |
LIVA G, PAOLINI E, and CHIANI M. Performance versus overhead for fountain codes over Fq[J]. IEEE Communications Letters, 2010, 14(2): 178-180. doi: 10.1109/ LCOMM.2010.02.092080.
|
[14] |
MADGE O G H and MACKAY D J C. Efficient fountain codes for medium blocklengths[OL]. http://www.inference. phy.cam.ac.uk/oghm2/files/fountain-draft.pdf. 2006, 1.
|
[15] |
RICHARDSON T J and URBANKE R L. Efficient encoding of low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 638-656. doi: 10.1109/ 18.910579.
|
[16] |
朱维庆, 朱敏, 武岩波, 等. 载人潜水器“蛟龙”号的水声通信信号处理[J]. 声学学报, 2012, 37(6): 565-573. doi: 10. 15949/J.CNKI.0371-0025.2012.06.001.
|
|
ZHU Weiqing, ZHU Min, WU Yanbo, et al. Signal processing in underwater acoustic communication system for manned deep submersible “Jiaolong”[J]. Acta Acustica, 2012, 37(6): 565-573. doi: 10.15949/ J.CNKI.0371-0025.2012.06.001.
|
[17] |
刘国, 于文慧, 吴家骥, 等. 基于系统Raptor码不等差错保护的图像压缩传输[J]. 电子与信息学报, 2013, 35(11): 2554-2559. doi: 10.3724/SP.J.1146.2012.01362.
|
|
LIU Guo, YU Wenhui, WU Jiaji, et al. Compressed image transmission based on systematic Raptor codes with unequal error protection[J]. Journal of Electronics & Information Technology, 2013, 35(11): 2554-2559. doi: 10.3724/SP.J.1146. 2012.01362.
|
[18] |
黄太奇, 易本顺, 姚渭箐, 等. 基于规则变量节点度和扩展窗喷泉码的不等差错保护算法[J]. 电子与信息学报, 2015, 37(8): 1931-1936. doi: 10.11999/JEIT141530.
|
|
HUANG Taiqi, YI Benshun, YAO Weiqing, et al. Novel scheme of unequal error protection based on regularized variable-node and expanding window fountain codes[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1931-1936. doi: 10.11999/JEIT141530.
|
|
|
|