|
|
Highly Squint SAR Imaging Algorithm Based on DFT Filter Banks |
JIANG Huai① ZHAO Huichang① Han Min② Zhang Shuning① |
①(School of Electronic and Optical, Nanjing University of Science and Technology, Nanjing 210094, China)
②(State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210094, China) |
|
|
Abstract The traditional highly squint SAR imaging algorithm reduces the difficulty in range migration correction by using the time-domain linear walking, and improves the azimuth focusing effect by applying non-linear scaling algorithm. However, the variable standard factor introduced also causes some difficulty for processing. To tackle this problem, this article proposes a new algorithm of azimuth focusing on basis of DFT filter bank theory. Compared with the traditional non-linear scaling algorithm, the new algorithm can compensate Doppler frequency rate better by no introduction of phase operation. The stability is improved and the calculation needed is also less than the traditional algorithm. The simulation results presented proves the effectiveness of the proposed algorithm.
|
Received: 10 April 2015
Published: 18 November 2015
|
|
Fund: Jiangsu Province University Innovation Program (KYLX_0368) |
Corresponding Authors:
JIANG Huai
E-mail: zero040310120@163.com
|
|
|
|
[1] |
WONG F H and YEO T S. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 5(39): 946-953.
|
[2] |
吴勇, 宋红军, 彭靳. 基于时域去走动的SAR 大斜视CS 成像算法[J]. 电子与信息学报, 2010, 32(3): 593-598. doi: 10.3724/SP.J.1146.2009.00472.
|
|
WU Yong, SONG Hongjun, and PENG Jin. Chirp scaling imaging algorithm of SAR in high squint mode based on range walk removal[J]. Journal of Electronics & Information Technology, 2010, 32(3): 593-598. doi: 10.3724/SP.J.1146.- 2009.00472.
|
[3] |
肖忠源, 徐华平, 李春生. 基于俯冲模型的频域距离走动校正NLCS-SAR 成像算法[J]. 电子与信息学报, 2013, 35(5): 1090-1096. doi: 10.3724/SP.J.1146.2012.01207.
|
|
XIAO Zhongyuan, Xu Huaping, and LI Chunsheng. NLCS SAR imaging algorithm with range-walk correction in frequency domain based on dive model[J]. Journal of Electronics & Information Technology, 2013, 35(5): 1090-1096. doi:10.3724/SP.J.1146.2012.01207.
|
[4] |
周松, 包敏, 周鹏, 等. 基于方位非线性变标的弹载SAR 下降段成像算法[J]. 电子与信息学报, 2011, 33(6): 1420-1426. doi: 10.3724/SP.J.1146.2010.01124.
|
|
ZHOU Song, BAO Min, ZHOU Peng, et al. An imaging algorithm for missile-borne SAR with downward movement based on azimuth nonlinear chirp scaling[J]. Journal of Electronics & Information Technology, 2011, 33(6): 1420-1426. doi: 10.3724/SP.J.1146.2010.01124.
|
[5] |
李震宇, 梁毅, 邢孟道, 等. 弹载合成孔径雷达大斜视子孔径频域相位滤波成像算法[J]. 电子与信息学报, 2015, 37(4): 954-959. Doi: 10.11999/JEIT140618.
|
|
LI Zhenyu, LIANG Yi, XING Mengdao, et al. A frequency phase filtering imaging algorithm for highly squint missile- borne synthetic aperture radar with subaperture[J]. Journal of Electronics & Information Technology, 2015, 37(4): 954-959. doi: 10.11999/JEIT140618.
|
[6] |
江淮, 赵惠昌, 汉敏, 等. 基于变量解耦的俯冲加速段弹载SAR大场景成像算法[J]. 物理学报, 2014, 63(7): 1320-1325.
|
|
JIANG Huai, ZHAO Huichang, HAN Min, et al. An imaging algorithm for missile-borne SAR with downward movement based on variable decoupling[J]. Acta Physica Sinica, 2014, 63(7): 1320-1325.
|
[7] |
LIU Gaogao, LI Peng, TANG Shiyang, et al. Focusing highly squinted data with motion errors based on modified non- linear chirp scaling[J]. IET Radar, Sonar & Navigation, 2013, 7(5): 568-578.
|
[8] |
SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nolinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308-2322.
|
[9] |
AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended nonlinear chirp scaling algorithm for high-Resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595-3609.
|
[10] |
江淮, 汉敏, 赵惠昌, 等. 基于子带补偿的弹载聚束SAR成像算法[J]. 物理学报, 2014, 63(19): 1123-1127.
|
|
JIANG Huai, HAN Min, ZHAO Huichang, et al. An imaging algorithm for missile-borne spotlight SAR based on subband compensation[J]. Acta Physica Sinica, 2014, 63(19): 1123-1127.
|
[11] |
CHANG C Y, JIN M, and CURLANDEER J C. Squint mode SAR processing algorithms[C]. 12th Canadian Symposium on Remote Sensing, Canada, 1989: 1702-1706.
|
[12] |
SCHIMIDT A R. Secondary range compression for improved range Doppler processing of SAR data with high squint[R]. University of British Columbia, Vancouver, 2008, 9.
|
[13] |
DAVIDSO G W and CUMMIN I. Signal properties of space borne squint mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 5(12): 611-617.
|
[14] |
黄源宝, 保铮, 周峰. 一种新的机载条带式SAR 沿航向运动补偿方法[J]. 电子学报, 2003, 33(3): 459-462.
|
|
HUANG Yuanbao, BAO Zheng, and ZHOU Feng. A novel method for along track motion compensation of the airborne stripmap SAR[J]. Acta Electronica Sinica, 2005, 33(3): 459-462.
|
[15] |
XING M, JIANG X, WU R, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870-2883.
|
[16] |
WANG Yan, LI Jingwen, CHEN Jie, et al. A parameter adjusting polar format algorithm for extremely high squint SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 640-650.
|
[17] |
周峰, 王琦, 刑孟道, 等. 一种机载大斜视SAR运动补偿方法[J]. 电子学报, 2007, 3(3): 460-469.
|
|
ZHOU Feng, WANG Qi, XING Mengdao, et al. A novel method of motion compensation for airborne high squint Synthetic Aperture Radar[J]. Acta Electronica Sinica, 2007, 3(3): 460-469.
|
|
|
|