|
|
A Kernel Adaptive Filter Vector Processor for Online Time Series Prediction |
PANG Yeyong WANG Shaojun PENG Yu PENG Xiyuan |
(Automatic Test and Control Institute, Harbin Institute of Technology, Harbin 150080, China) |
|
|
Abstract To address the online time series prediction problem in CPS (Cyber-Physical System) system, both KAF (Kernel Adaptive Filter) with low computation complexity and adaptive characteristic and FPGA computing system are employed. A novel FPGA implementation of vector processor targeting KAF algorithm is proposed. The parallelized datapath and multi-stage pipeline are introduced to enhance the performance and reduce the power consumption and latency. The microcoding technology is further employed to improve the reusability and extensibility. The classical KAF algorithms are implemented based on the vector processor. Experiments results show that the proposed vector processor improves the execution speed by factors of 22, the power consumption decrease to 1/139, while the latency decrease to 1/26 compared with a CPU, on the condition that the precision meets the requirement.
|
Received: 27 January 2015
Published: 17 November 2015
|
|
Fund: The National Natural Science Foundation of China (61571160/F011305), Fundamental Research Funds for the Central Universities (HIT.NSRIF.201615) |
Corresponding Authors:
PANG Yeyong
E-mail: yeyongpang@126.com
|
|
|
|
[1] |
王中杰, 谢璐璐. 信息物理融合系统研究综述[J]. 自动化学报, 2011, 37(10): 1157-1166.
|
|
WANG Zhongjie and XIE Lulu. Cyber-physical system: a survey[J]. Acta Automatica Sinica, 2011, 37(10): 1157-1166.
|
[2] |
周建宝, 王少军, 马丽萍, 等. 可重构卫星锂离子电池剩余寿命预测系统研究[J]. 仪器仪表学报, 2013, 34(9): 2034-2044.
|
|
ZHOU Jianbao, WANG Shaojun, MA Li-ping, et al. Study on the reconfigurable remaining useful life estimation system for satellite lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2013, 34(9): 2034-2044.
|
[3] |
王少军. 时间序列预测的可重构计算研究[D]. [博士论文], 哈尔滨工业大学, 2012.
|
|
WANG Shaojun. Research on reconfigurable computing for time series forecasting[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2012.
|
[4] |
曹葵康. 支持向量机加速方法及应用研究[D]. [博士论文], 浙江大学, 2010.
|
|
CAO Kuikang. Acceleration and application of support vector machines[D]. [Ph.D. dissertation], Zhejiang University, 2010.
|
[5] |
江洁, 凌思睿. 一种投票式并行RANSAC算法及其FPGA实现[J]. 电子与信息学报, 2014, 36(5): 1145-1150. doi: 10.3724/ SP.J.1146.2013.00962.
|
|
JIANG Jie and LING Sirui. Parallel voting RANSAC and its implementation on FPGA[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1145-1150. doi: 10. 3724/SP.J.1146.2013.00962.
|
[6] |
兰亚柱, 杨海钢, 林郁. 动态自适应低密度奇偶校验码译码器的FPGA实现[J]. 电子与信息学报, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
|
|
LAN Yazhu, YANG Haigang, and LIN Yu. Design of dynamic adaptive LDPC decoder based on FPGA[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
|
[7] |
PAPADONIKOLAKIS M. A scalable FPGA architecture for non-linear svm training[C]. Proceeding of 2008 International Conference on Field Programmable Technology, Taipei, China, 2008: 337-340.
|
[8] |
ANGUITA D, CARLINO L, GHIO A, et al. A FPGA core generator for embedded classification systems[J]. Journal of Circuits, Systems and Computers, 2011, 20(2): 263-282.
|
[9] |
MAJUMDAR A, CADAMBI S, BECCHI M, et al. A massively parallel, energy efficient programmable accelerator for learning and classification[J]. ACM Transactions on Architecture and Code Optimization, 2012, 9(1): 6:1-6:30.
|
[10] |
KOZYRAKIS C and PATTERSON D. Vector vs. superscalar and vliw architectures for embedded multimedia benchmarks[C]. Proceeding of 35th Annual IEEE/ACM International Symposium on Microarchitecture, Califonia, USA, 2002: 283-293.
|
[11] |
YIANNACOURAS P, STEFFAN J G, and ROSE J. Portable, flexible, and scalable soft vector processors[J]. IEEE Transactions on Very Large Scale Integration Systems, 2012, 20(8): 1429-1442.
|
[12] |
YU J, EAGLESTON C, CHOU C H Y, et al. Vector processing as a soft processor accelerator[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 2(2): 12:1-12:34.
|
[13] |
VAN VAERENBERGH S, VIA J, and SANTAMARIA I. A sliding-window kernel RLS algorithm and its application to nonlinear channel identification[C]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006: 789-792.
|
[14] |
PANG Yeyong, WANG Shaojun, PENG Yu, et al. A low latency kernel recursive least squares processor using FPGA technology[C]. 2013 International Conference on Field- Programmable Technology (FPT), Kyoto, Japan, 2013: 144-151.
|
[15] |
VAN VAERENBERGH S, SANTAMARIA I, WEIFENG L, et al. Fixed- budget kernel recursive least-squares[C]. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dalas, USA, 2010: 1882-1885.
|
[16] |
RICHARD C, BERMUDEZ J C M, and HONEINE P. Online prediction of time series data with kernels[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 1058-1067.
|
[17] |
KRUIF B J and VRIES T J A. Pruning error minimization in least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2003, 14(3): 696-702.
|
[18] |
LEONG P H W and LEUNG I K H. A microcoded elliptic curve processor using FPGA technology[J]. IEEE Transactions on VLSI Systems, 2002, 10(5): 550-559.
|
[19] |
CHAU T C P, KUREK M, TARGETT J S, et al. SMCGen: Generating reconfigurable design for sequential Monte Carlo applications[C]. Proceeding of 22nd IEEE Symposium on
|
|
Field-Programmable Custom Computing Machines (FCCM), Boston, USA, 2014: 141-148.
|
[20] |
VAN VAERENBERGH S and SANTAMARIA I. A comparative study of kernel adaptive filtering algorithms[C]. Proceedings of 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting, California, USA, 2013: 181-186.
|
|
|
|