|
|
DOA Estimation Via Sparse Representation of the Smoothed Array Covariance Matrix |
CAI Jingjing① ZONG Ru① CAI Hui② |
①(School of Electronic Engineering, Xidian University, Xi’an 710071, China)
②(95037 People’s Liberation Army Troops China, Wuhan 430074, China) |
|
|
Abstract A novel Direction-Of-Arrival (DOA) estimation algorithm based on spatial smoothing and sparse reconstruction is proposed in this paper. Firstly, the covariance matrix is processed using spatial smoothing theory, and it is converted with the Khatri-Rao transformation, then DOA estimation is achieved by sparse reconstruction of the converted matrix. Furthermore, two different kinds of methods are given to deal with the error of the objective function. Experimental results show that the proposed algorithm can reduce the amount of computation, and exhibit better performance on both coherent and non-coherent signals compared with the other DOA algorithms based on compressed sensing, especially under the conditions of low angle interval, low signal-to-noise ratio and low sampling number.
|
Received: 07 May 2015
Published: 28 August 2015
|
|
Fund: The National Natural Science Foundation of China (61405150, 61271300), The Fundamental Research Funds for the Central Universities (JB140229) |
Corresponding Authors:
CAI Jingjing
E-mail: jjcai@mail.xidian.edu.cn
|
|
|
|
[1] |
焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662.
|
|
JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662.
|
[2] |
沈志博, 董春曦, 黄龙, 等. 基于压缩感知的宽频段二维DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2935-2941. doi: 10.3724/SP.J.1146.2013.01931.
|
|
SHEN Zhibo, DONG Chunxi, HUANG Long, et al. Broadband 2-D DOA estimation based on compressed sensing[J]. Journal of Electronics & Information Technology, 2014, 36(12): 2935-2941. doi: 10.3724/SP.J.1146.2013.01931.
|
[3] |
林波, 张增辉, 朱炬波. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
|
|
LIN Bo, ZHANG Zenghui, and ZHU Jubo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics & Information Technology, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146. 2013.00149.
|
[4] |
MARCO ROSSI, ALEXANDER M H, and YONINA C E. Spatial compressive sensing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 419-430.
|
[5] |
LIU Zhangmeng. Direction-of-arrival estimation with time- varying arrays via Bayesian multitask learning[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3762-3773.
|
[6] |
GU Jianfeng, ZHU Weiping, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182.
|
[7] |
MALIOUTOV D M, CETIN M, and WILLSKY A S. Optimal sparse representations in general overcomplete bases [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, 2004: 793-796.
|
[8] |
TIBSHIRANI R. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1): 267-288.
|
[9] |
MALIOUTOV D, MUJDAT C, and WILLSKY A. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
|
[10] |
Hyder M and Mahata K. Direction of arrival estimation using a mixed l2.0-norm approximation[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4646-4655.
|
[11] |
YIN J and CHEN T. Direction of arrival estimation using a sparse representation of array covariance vectors[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493.
|
[12] |
MA W K, HSIEH T H, and CHI C Y. DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2168-2180.
|
[13] |
EVANS J E, SUN D F, and JOHNSON J R. Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance systems[R]. Massachusetts Inst of Tech Lexington Lincoln Lab, 1982.
|
[14] |
ORERSTEN B, STOICA P, and ROY R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Processing, 1998, 8(3): 185-210.
|
[15] |
GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming[OL]. http://cvxr.com/cvx, 2012.
|
[16] |
LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Array signal processing via sparsity-inducing representation of the array covariance matrix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1710-1724.
|
|
|
|