|
|
Distributed Multiuser Beamforming for Relay Networks in Frequency-selective Channels |
Zhang Li Chen Hai-hua He Ming Sun Gui-ling |
(College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China) |
|
|
Abstract In this paper, a distributed peer-to-peer beamforming technique in frequency-selective relay networks is proposed. It is assumed that all the relay nodes use Filter-and-Forward (FF) protocol to compensate for the source-to-relay and relay-to-destination channels. All the channels of the active source-destination pairs are considered to be frequency-selective. The beamforming strategy that minimizes the total relay transmitted power subject to the Quality-of-Service (QoS) constraints for all of the destination nodes is considered. The resultant problem is approximately solved using Semi-Definite Programming (SDP). Simulation results demonstrate that in frequency-selective multiuser relay networks, the proposed technique substantially outperforms the existing amplify-and-forward peer-to-peer beamforming methods.
|
Received: 27 January 2015
Published: 24 August 2015
|
|
Fund: The National Natural Science Foundation of China (61171140) |
Corresponding Authors:
Chen Hai-hua
E-mail: hhchen@nankai.edu.cn
|
|
|
|
[1] |
Wang Hui-ming, Luo Miao, Xia Xiang-gen, et al.. Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper,s CSI[J]. IEEE Signal Processing Letters, 2013, 20(1): 39-42.
|
[2] |
Zappone A, Cao P, and Jorswieck E A. Energy efficiency optimization in relay-assisted MIMO systems with perfect and statistical CSI[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 443-457.
|
[3] |
罗苗, 王慧明, 殷勤业. 基于协作波束形成的中继阻塞混合无线物理层安全传输[J]. 中国科学: 信息科学, 2013, 43(4): 445-458.
|
|
Luo Miao, Wang Hui-ming, and Yin Qin-ye. Hybrid relaying and jamming for wireless physical layer security based on cooperative beamforming[J]. SCIENCE CHINA Information Science, 2013, 43(4): 445-458.
|
[4] |
Yang Y, Li Q, Ma W K, et al.. Cooperative secure beamforming for AF relay networks with multiple eavesdroppers[J]. IEEE Signal Processing Letters, 2013, 20(1): 35-38.
|
[5] |
Wang X, Wang K, and Zhang X D. Secure relay beamforming with imperfect channel side information[J]. IEEE Transactions on Vehicular Technology, 2013, 62(5): 2140-2155.
|
[6] |
王超, 邓科, 庄丽莉, 等. 协作认知网络中鲁棒的分布式波束形成[J]. 西安交通大学学报, 2013, 47(12): 84-89.
|
|
Wang Chao, Deng Ke, Zhuang Li-li, et al.. A robust distributed relay beamforming algorithm for cooperative cognitive radio networks[J]. Journal of Xi’an Jiaotong University, 2013, 47(12): 84-89.
|
[7] |
Zhang Y, Zhao H, and Pan C. Optimization of an amplify- and-forward relay network considering time delay and estimation error in channel state information[J]. IEEE Transactions on Vehicular Technology, 2014, 63(5): 2483-2488.
|
[8] |
Hadjtaieb A, Chelli A, Alouini M S, et al.. Performance analysis of selective decode-and-forward multi-node incremental relaying with maximal ratio combining[C]. Proceedings of the International Conference on Communications and Networking (ComNet), Hammamet, Tunisia, 2014: 1-6.
|
[9] |
Gonzalez D C, Santos Filho J C S, and Costa D B D. A distributed transmit antenna selection scheme for fixed-gain multi-antenna AF relaying systems[C]. Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Oulu, Finland, 2014: 254-259.
|
[10] |
Li Z, Shen L, and Wang J. Quasi-orthogonal space time block code for decode-and-forward relay networks[C]. Proceedings of the International Forum on Computer Science-Technology and Applications (IFCSTA), Chongqing, China, 2009: 58-61.
|
[11] |
Luo J, Blum R S, Cimini L J, et al.. Decode-and-forward cooperative diversity with power allocation in wireless networks[J]. IEEE Transactions on Wireless Communications, 2007, 6(3): 793-799.
|
[12] |
Jing Y and Jafarkhani H. Distributed differential space-time coding for wireless relay networks[J]. IEEE Transactions on Communications, 2008, 56(7): 1092-1100.
|
[13] |
Mheidat H, Uysal M, and Al-Dhahir N. Equalization techniques for distributed space-time block codes with amplify-and-forward relaying[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1839-1852.
|
[14] |
Jing Y and Jafarkhani H. Network beamforming using relays with perfect channel information[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, USA, 2007: 473-476.
|
[15] |
Jing Y, and Jafarkhani H. Network beamforming using relays with perfect channel information[J]. IEEE Transactions on Information Theory, 2009, 55(6): 2499-2517.
|
[16] |
Zheng G, Wong K K, Paulraj A, et al.. Collaborative-relay beamforming with perfect CSI: optimum and distributed implementations[J]. IEEE Signal Processing Letters, 2009, 16(4): 257-260.
|
[17] |
Havary-Nassab V, Shahbazpanahi S, Grami A, et al.. Distributed beamforming for relay netowrks based on second- order statistics of the channel state information[J]. IEEE Transactions on Signal Processing, 2008, 56(9): 4306-4316.
|
[18] |
Fazeli-Dehkordy S, Shahbazpanahi S, and Gazor S. Multiple peer-to-peer communications using a network of relays[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 3053-3062.
|
[19] |
Chen H, Gershman A, and Shahbazpanahi S. Filter-and- forward distributed beamforming for relay networks in frequency selective fading channels[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, China, 2009: 2269-2272.
|
[20] |
Chen H, Gershman A, and Shahbazpanahi S. Filter-and- forward distributed beamforming for relay networks in frequency selective fading channels[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1251-1262.
|
[21] |
Rappaport T S. Wireless Communications: Principles and Practice (Second Edition)[M]. Upper Saddle River, Prentice Hall, 2002: 143-153, 308-323.
|
[22] |
Boyd S and Vandenberghe L. Convex Optimization[M]. New York: Cambridge University Press, 2004: 168-188.
|
[23] |
Sturm J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods & Software, 1999, 11(1-4): 625-653.
|
[24] |
Lobo M S, Vandenberghe L, Boyd S, et al.. Applications of second-order cone programming[J]. Linear Algebra and Its Applications, 1998, 284(1-3): 193-228.
|
[25] |
Beck A and Eldar Y C. Strong duality in noncovex quadratic optimization with two quadratic constraints[J]. SIAM Journal on Optimization, 2006, 17(3): 844-860.
|
[26] |
Ma W K, Davidson T N, Wong K M, et al.. Quasi-ML multiuser detection using semi-definite relaxation with application to synchronous CDMA[J]. IEEE Transactions on Signal Processing, 2002, 50(4): 912-922.
|
[27] |
Sidiropoulos N D, Davidson T N, and Luo Z Q. Transmit beamforming for physical-layer multicasting[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2239-2251.
|
|
|
|