A Frequency-domain Algorithm Based on Local Cartesian Coordinate and Subregion Processing for Missile-borne SAR Imaging
BIE Bowen①② SUN Lu③ XING Mengdao①② LIANG Yi①② SUN Guangcai①②
①(National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China) ②(Collaborative Innovation Center of Information Sensing and Understand, Xidian University, Xi’an 710071, China) ③(China Air Force Equipment Headquarter, Beijing 100843, China)
Abstract:The missile-borne SAR platform has the characteristics of nonlinear trajectory and high-squint mode. A frequency-domain imaging algorithm based on local Cartesian coordinate and subregion processing is proposed. For high-squint mode, the range model is built in local Cartesian coordinate to match accurately the azimuth signal after range walk correction. To compensate the azimuth-dependent range cell migration and Doppler parameters accurately, the imaging area is divided into several subregions. The final focused image can be obtained when all the subregion images are interpolated uniformly into the ground coordinate. Finally, the point targets simulation and real SAR data verify the effectiveness of the proposed algorithm.
别博文,孙路,邢孟道,梁毅,孙光才. 基于局部直角坐标和子区域处理的弹载SAR频域成像算法[J]. 电子与信息学报, 2018, 40(8): 1779-1786.
BIE Bowen, SUN Lu, XING Mengdao, LIANG Yi, SUN Guangcai. A Frequency-domain Algorithm Based on Local Cartesian Coordinate and Subregion Processing for Missile-borne SAR Imaging. JEIT, 2018, 40(8): 1779-1786.
CUMMING I G and FRANK H W. Digital Processing of Synthetic Aperture Radar Data[M]. Washington DC: Artech House, 2005: 1-30.
[2]
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 9.
[3]
LIANG Y, LI Zhenyu, ZENG Letian, et al. A high-order phase correction approach for focusing HS-SAR small- aperture data of high-speed moving platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4551-4561. doi: 10.1109/ JSTARS.2015.2459765.
LI Zhenyu, CHEN Jianlai, LIANG Yi, et al. Imaging method for highly squinted SAR with spatially-variant Doppler centroid correction[J]. Journal of Xidian University (Natural Science), 2016, 43(3): 19-24. doi: 10.3969/j.issn.1001-2400. 2016.03.004.
[5]
LI Zhenyu, LIANG Yi, XIMG Mengdao, et al. Focusing of highly squinted SAR data with frequency nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 23-27. doi: 10.1109/LGRS.2015.2492681.
HUAI Yuanyuan, LIANG Yi, LI Zhenyu, et al. Modified Omega-K algorithm for sub-aperture high squint SAR imaging based on azimuth resampling[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1743-1750. doi: 10.11999/JEIT141383.
[7]
LIANG Yi, HUAI Yuanyuan, DING Jinshan, et al. A modified algorithm for HS-SAR small-aperture data imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3710-3721. doi: 10.1109/TGRS.2016. 2525787.
[8]
LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency- domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023-4038. doi: 10.1109/TGRS.2016.2535391.
[9]
ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718-6734. doi: 10.1109/TGRS.2015.2447393.
[10]
LI Zhenyu, XING Mengdao, XING Wenjie, et al. A modified equivalent range model and wavenumber-domain imaging approach for high-resolution-high-squint SAR with curved trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3721-3734. doi: 10.1109/TGRS.2017. 2678763.
[11]
LI Zhenyu, LIANG Yi, XING Mengdao, et al. An improved range model and omega-K-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 656-660. doi: 10.1109/LGRS.2016.2533631.
LI Zhenyu, LIANG Yi, XING Mengdao, et al. A frequency phase filtering imaging algorithm for highly squint missile-borne synthetic aperture radar with subaperture[J]. Journal of Electronics & Information Technology, 2015, 37(4): 953-960. doi: 10.11999/JEIT140618.
[14]
TANG Shiyang, ZHANG Linrang, GUO Ping, et al. An omega-K algorithm for highly squinted missile-borne SAR with constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1569-1573. doi: 10.1109/LGRS. 2014.2301718.
[15]
SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868-4880. doi: 10.1109/TGRS.2013.2285721.
[16]
NEO Y L, FRANK W, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93-96. doi: 10.1109/LGRS.2006.885862.