Abstract:To realize the high-resolution wide-swath mapping capability of spaceborne SAR, this paper presents a parabolic cylinder reflector based MIMO SAR system. According to the analysis of system configuration and Short-Term Shift-Orthogonal (STSO) transmitting waveforms, the specific processing method are elaborated. Taking advantage of parabolic characteristics in elevation, the narrow beams with high gain can be easily realized by the parabolic cylinder reflector. This facilitates the efficient separation of STSO transmitting waveforms by using the digital beam-forming technique, therefore, more azimuth equivalent phase centers can be obtained. After the multichannel reconstruction processing in azimuth, the echo signals from illuminated scene can be imaged by conventional imaging algorithms. The simulation results show that, the proposed system has satisfactory performance for MIMO SAR imaging.
CUMMING I and WONG F. Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005: 3-15.
[2]
FREEMAN A, JOHNSON W, HUNEYCUTT B, et al. The “myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320-324. doi: 10.1109/36.823926.
[3]
SUESS M, GRAFMUELLER B, ZAHN R, et al. A novel high resolution, wide swath SAR system [C]. Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, 2001: 1013-1015.
[4]
MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth's surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8-23. doi: 10.1109/MGRS.2015.2437353.
[5]
RINCON R, FATOYINBO T, OSMANOGLU B, et al. Development of NASA’s next generation L-band digital beamforming synthetic aperture radar (DBSAR-2)[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 1251-1254.
[6]
HUBER S, VILLANO M, YOUNIS M, et al. Tandem-L: Design concepts for a next-generation Spaceborne SAR system[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 1237-1241.
[7]
YOUNIS M, ALMEIDA F, LOPEZ-DEKKER P, et al. Techniques and modes for multi-channel SAR instruments [C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 812-817.
[8]
TRIDON D, BACHMANN M, ZAN F, et al. Tandem-L observation concept-contributions and challenges of systematic monitoring of earth system dynamics[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017: 1-9.
[9]
KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 91-96.
[10]
LIU Feng, MU Shanxiang, LU Wanghan, et al. MIMO SAR waveform separation based on costas-LFM signal and co-arrays for maritime surveillance[J]. Chinese Journal of Electronics, 2017, 26(1): 211-217. doi: 10.1049/cje.2016.11. 015.
[11]
YANG Dong, YANG Xi, TAN Xiaomin, et al. Ground moving target detection in MIMO-SAR system[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1062-1065.
[12]
KIM J, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453-2466. doi: 10.1109/TGRS.2014.2360148.
[13]
WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615-1625. doi: 10.1109/TGRS.2014.2346478.
[14]
WANG Jie, CHEN Longyong, LIANG Xingdong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218-5228. doi: 10.1109/TGRS. 2015.2419271.
[15]
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. A novel space-time coding scheme used for MIMO-SAR systems [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556-1560. doi: 10.1109/LGRS.2015.2412961.
[16]
JING Guobin, XING Mengdao, CHEN Jianlai, et al. A novel digital beam-forming (DBF) method for multi-modes MIMO SAR[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1-5.
[17]
LI Taoyong, ZHANG Qun, WANG Kai, et al. A novel imaging method for airborne downward-looking 3D MIMO- SAR based on compressed sensing[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 5027-5030.
[18]
LI Jian, STOICA P, and ZHENG Xiayu. Signal synthesis and receiver design for MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3959-3968. doi: 10.1109/TSP.2008.923197.
[19]
KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46. doi: 10.1109/TGRS.2007.905974.
[20]
KRIEGER G, HUBER S, VILLANO M, et al. SIMO and MIMO system architectures and modes for high-resolution ultra-wide-swath SAR imaging[C]. Proceedings of EUSAR 2016, Hamburg, Germany, 2016: 187-192.
[21]
KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628-2645. doi: 10.1109/TGRS.2013.2263934.
[22]
VAN T H L. Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, 2002: 428-669.