Range Scaling Compensation Method Based on STOLT Interpolation in Broadband Squint SAS Imaging
WANG Jinbo① TANG Jinsong② ZHANG Sen② ZHONG Heping②
①(College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China) ②(Naval Institute of Underwater Acoustic Technology, Naval University of Engineering, Wuhan 430033, China)
Abstract:Considering the problem of large squint synthetic aperture sonar imaging, the analytical expression of the wavenumber spectrum is analyzed in detail in the radial and azimuth wavenumber fields under the wide-band high-squint conditions. The spectrum winding and shrink in the distance wavenumber fields after the Stolt interpolation are pointed out, and the reduced relative distance between the target in the imaging result is also indicated, then the Stolt interpolation method for distance wavenumber spectrum winding is given. The concept of range wavenumber scaling factor is proposed, the method of compensating the scaling factor and the spectrum winding in the distance space are given. Finally, the problem of range scaling caused by Stolt interpolation under large oblique angle is solved by compensating the distance variable in distance space. Point object simulation data and simulated echo data processing verify the correctness and validity of the proposed method.
王金波,唐劲松,张森,钟和平. 一种宽带大斜视STOLT插值及距离变标补偿方法[J]. 电子与信息学报, 2018, 40(7): 1575-1582.
WANG Jinbo, TANG Jinsong, ZHANG Sen, ZHONG Heping. Range Scaling Compensation Method Based on STOLT Interpolation in Broadband Squint SAS Imaging. JEIT, 2018, 40(7): 1575-1582.
CARBALLINI J and VIANA F. Using synthetic aperture sonar as an effective tool for pipeline inspection survey projects[C]. IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics), Rio de Janeiro, Brazil, 2015: 1-5.
[2]
CHEN C, ZARE A, and COBB J T. Sand ripple characterization using an extended synthetic aperture sonar model and parallel sampling method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5547-5559. doi: 10.1109/TGRS.2015.2424837.
[3]
HANSEN R E, CALLOW H J, SABO T O, et al. Challenges in seafloor imaging and mapping with synthetic aperture sonar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3677-3687. doi: 10.1109/TGRS.2011. 2155071.
[4]
HANSEN R E, LYONS A P, TORSTEIN O S, et al. The effect of internal wave-related features on synthetic aperture sonar[J]. IEEE Journal of Oceanic Engineering, 2015, 40(3): 621-631. doi: 10.1109/JOE.2014.2340351.
[5]
Applied Signal Technology, Incorporated. and Williamson & Associates, Incorporated. ProSAS surveyor PS60-6000 long range, high-resolution sonar system: Deep operation[OL]. http://www.wassoc.com/upload/specifications/SAS%20brochure%20prosas60-final.pdf, 2016.
[6]
LARSEN L J, HYDROSPHERIC S, WILBY A, et al. Deep ocean survey and search using synthetic aperture sonar[C]. MTS/IEEE Oceans Conference, Seattle, USA, 2010: 1-4.
[7]
TIAN Zhen, TANG Jinsong, ZHONG Heping, et al. Extended range Doppler algorithm for multiple-receiver synthetic aperture sonar based on exact analytical two-dimensional spectrum[J]. IEEE Journal of Oceanic Engineering, 2016, 41(1): 164-174. doi: 10.1109/JOE.2015. 2402053.
[8]
SAWA T, KASAYA T, NAKATSUKA K, et al. Improvement of synthetic aperture sonar with multi-channel projector[C]. MTS/IEEE OCEANS,15, Washington, USA, 2015: 1-6.
[9]
QIAO Ziliang and KRAUS D. Azimuth ambiguity in redundant sampled stripmap SAS imaging[C]. MTS/IEEE OCEANS,16, Shanghai, China, 2016: 1-5. doi: 10.3873/ j.izzn.1000-1328.2016.01.015.
LI Jianbing, ZHANG Shuangxi, SU Daliang, et al. A squint SAR imaging for linear range cell migration correction in Doppler domain[J]. Journal of Astronautics, 2016, 37(1): 118-126. doi: 10.383873/j.issn.1000-1328.2016.01.015.
HOU Yuxing. Study on HRWS SAR imaging and the algorithm performance improvement[D]. [Ph.D. dissertation], Xidian University, 2015: 31-33.
[12]
STOLT R H. Migration by fourier transform[J]. Geophysics, 1978, 43(1): 23-48.
[13]
TOLMAN M A and LONG D G. New results on the Omega-k algorithm for processing synthetic aperture radar data[C]. 2011 IEEE Radar Conference (RADAR), Kansas City, USA, 2011: 868-873. doi: 10.1109/RADAR.2011.5960661.
[14]
CUMMING I G and WONG F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. London: Artech House, 2004: 119-226.
[15]
CALLOW H J, HAYES M P, and Gough P T. Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry[J]. Electronics Letters, 2002, 38(7): 336-338. doi: 10.1049/el:20020219.
[16]
CAFFORIO C, PRATI C, and ROCCA F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207. doi: 10.1109/7.78293.