Abstract:Traditionally, skin permeability evaluation, which is realized by impedance detected at a certain frequency based on macro electrodes, has the disadvantages of large measurement error, low sensitivity and difficulty in integration. In order to resolve this problem, a flexible non-symmetric interdigital microsensor is designed by analyzing the layered structure of skin and the relationship between skin permeability and impedance of Stratum Corneum(SC). The impedance of SC is measured and analyzed based on the RCW-layered impedance model. It is illustrated that the impedance magnitude of microsensor output and model fitting parameters can be used as the important indicators to evaluate skin permeability. It is proved that the developed sensor can be applied to distinguishing the different individuals’ skin permeability, and it strongly supports the adjustment of wearable devices related to human physiological and biochemical detection.
KIM J, CAMPBELL A S, and WANG J. Wearable non-invasive epidermal glucose sensors: A review0[J]. Talanta, 2017, 177: 163-170. doi: 10.1016/j.talanta.2017.08.077.
ZHAO Zhan, HAN Lu, FANG Zhen, et al. Research on daily stress detection based on wearable device[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2669-2676. doi: 10.11999/JEIT170120.
[3]
KENR Y, YEO J C, and LIM C T. Emerging flexible and wearable physical sensing platform for healthcare and biomedical applications[J]. Microsystems & Nanoengineering, 2016, 2, 16043. doi: 10.1038/micronano.2016.43.
[4]
KRISHNAN S, SHI Y, CHADWEBB R, et al. Multimodal epidermal devices for hydration monitoring[J]. Microsystems & Nanoengineering, 2017, 3, 17014. doi: 10.1038/micronano. 2017.14.
[5]
MCCORMICK C, HEATH D, and CONNOLLY P. Minimally Invasive Sensing[M]. Rijeka, Croatia, 2011: 355-382.
[6]
VENTRELLI L, MARSILIO S L, and BARILLARO G. Microneedles for transdermal biosensing: Current picture and future direction[J]. Advanced Healthcare Materials, 2015, 4(17): 2606-2640. doi: 10.1002/adhm.201500450.
[7]
EASTMAN R C, CHASE H P, BUCKINGHAM B, et al. Use of the GlucoWatch biographer in children and adolescents with diabetes[J]. Pediatric Diabetes, 2002, 3(3): 127-34. doi: 10.1034/j.1399-5448.2002.30302.x.
[8]
YOSHIMATSU H, ISHII K, KONNO Y, et al. Prediction of human percutaneous absorption from in vitro and in vivo animal experiments[J]. International Journal of Pharmaceutics, 2017, 534(1): 348-355. doi: 10.1016/j.ijpharm. 2017.10.048.
[9]
WHITE E A, HORNE A, RUNCIMAN J, et al. On the correlation between single-frequency impedance measurements and human skin permeability to water[J]. Toxicology in Vitro, 2011, 25(8): 2095-2104. doi: 10.1016/ j.tiv.2011.09.011.
[10]
SCHWINGENSCHUH S, SCHARFETTER H, MARTINSEN O G, et al. Assessment of skin permeability to topically applied drugs by skin impedance and admittance[J]. Physiological Measurement, 2017, 38(11): N138-N150. doi: 10.1088/1361-6579/aa904e.
[11]
MARTINSEN ? G, GRIMNES S, and HAUG E. Measuring depth depends on frequency in electrical skin impedance measurements[J]. Skin Research & Technology, 2010, 5(3): 179-181. doi: 10.1111/j.16000846.1999.tb00128.x.
[12]
CLEMENTE F, ARPAIA P, and MANNA C. Characterization of human skin impedance after electrical treatment for transdermal drug delivery[J]. Measurement, 2013, 46(9): 3494-3501. doi: 10.1016/j.measurement.2013.06. 033.
[13]
LI Dachao, PU Zhihua, LIANG Wenshuai, et al. Non-invasive measurement of normal skin impedance for determining the volume of the transdermally extracted interstitial fluid[J]. Measurement, 2015, 62: 215-221. doi: 10.1016/j.measurement. 2014.11.015.
[14]
KALIA Y N and GUY R H. The electrical characteristics of human skin in vivo[J]. Pharmaceutical Research, 1995, 12(11): 1605-1613. doi: 10.1023/A:1016228730522.
[15]
IVANIC R, NOVOTNY I, REHACEK V, et al. Thin film non-symmetric microelectrode array for impedance monitoring of human skin[J]. Thin Solid Films, 2003, 433(1): 332-336. doi: 10.1016/S0040-6090(03)00389-4.
[16]
MAMISHEV A V, SUNDARA-RAJAN K, YANG Fumin, et al. Interdigital sensors and transducers[J]. Proceedings of the IEEE, 2004, 92(5): 808-845. doi: 10.1109/JPROC.2004. 826604.
YANG Pengfei, PENG Chunrong, ZHANG Haiyan, et al. Design and testing of a SOI electric-field microsensor[J]. Journal of Electronics & Information Technology, 2011, 33(11): 2771-2774. doi: 10.3724/SP.J.1146.2010.01285.
[18]
HUCLOVA S, BAUMANN D, TALARY M S, et al. Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin[J]. Physics in Medicine & Biology, 2011, 56(24): 7777-7793. doi: 10.1088/0031-9155/56/24/007.
[19]
GABRIEL S, LAU R W, and GABRIEL C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine & Biology, 1996, 41(11): 2271-2293. doi: 10.1088/0031-9155/ 41/11/003.
[20]
BARONI A, BUOMMINO E, DE G V, et al. Structure and function of the epidermis related to barrier properties[J]. Clinics in Dermatology, 2012, 30(3): 257-262. doi: 10.1016/ j.clindermatol.2011.08.007.
[21]
BIRGERSSON U, BIRGERSSON E, ABERG P, et al. Non-invasive bioimpedance of intact skin: Mathematical modeling and experiments[J]. Physiological Measurement, 2011, 32(1): 1-18. doi: 10.1088/0967-3334/32/1/001.
[22]
SANDBY-M LLER J, POULSEN T, and WULF H C. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits[J]. Acta Dermato-Venereologica, 2003, 83(6): 410-413. doi: 10.1080/00015550310015419.