Abstract:In the Time Division Long Term Evolution (TD-LTE) indoor distributed network, the signal differences among different positions are insignificant, thus accurate localization can not be achieved by reference point calibration. To solve this compelling problem, this paper proposes a correlation sequencing based localization algorithm. Firstly, the signal information among adjacent positions is utilized to construct Reference Signal Receiving Power (RSRP) motion sequence database. Next, correlation sequencing algorithm is conducted to obtain relation between real-time RSRP sequence and the ones in constructed database, which results in a set of candidate sequence. After that, the correlation coefficient and mean Euclidean distance between candidate sequences and the online one are calculated. Finally, the optimal candidate sequence is selected by a voting strategy to estimate target’s position. Experimental results show that the proposed localization algorithm can effectively improve the localization accuracy within indoor distributed antenna system.
YANG Ting and ZHU Liping. A review of modern indoor localization systems[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 10-11.
[2]
GU Y, LO A, and NIEMEGEERS I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE Communications Surveys & Tutorials, 2009, 11(1): 13-32. doi: 10.1109/SURV.2009.090103.
LI Lina, MA Jun, LONG Yue, et al. Double stage indoor localization algorithm based on LANDMARC and compressive sensing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1631-1637. doi: 10.11999/ JEIT151050.
[4]
HARTER A, HOPPER A, STEGGLES P, et al. The anatomy of a context-aware application[J]. Wireless Networks, 2002, 8(2): 187-197. doi: 10.1023/A:1013767926256.
[5]
WANG G, CHEN H, LI Y, et al. On Received-signal-strength based localization with unknown transmit power and path loss exponent[J]. IEEE Wireless Communications Letters, 2012, 1(5): 536-539. doi: 10.1109/WCL.2012.072012.120428.
[6]
JOURDAN D B, DEYST J J, WIN M Z, et al. Monte Carlo localization in dense multipath environments using UWB ranging[C]. IEEE International Conference on Ultra- Wideband, Zurich, Switzerland, 2005: 314-319. doi: 10.1109/ ICU.2005.1570005.
[7]
NI L M, LIU Y, LAU Y C, et al. LANDMARC: Indoor location sensing using active RFID[J]. Wireless Networks, 2004(10): 701-710. doi: 10.1023/B: WINE.0000044029.06344. dd.
[8]
LIU B, CHEN H, ZHONG Z, et al. Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3532-3542. doi: 10.1109/TWC.2010.090210.100146.
[9]
ZHANG W, YIN Q, CHEN H, et al. Distributed angle estimation for localization in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 527-537. doi: 10.1109/TWC.2012.121412.111346.
[10]
DEL PERAL-ROSADO J A, LOPEZ-SALCEDO J A, SECOGRANADOS G, et al. Evaluation of the LTE positioning capabilities under typical multipath channels[C]. IEEE Advanced Satellite Multimedia Systems Conference, Baiona, Spain, 2012: 139-146. doi: 10.1109/ASMS-SPSC. 2012. 6333065.
TIAN Zengshan, WANG Xiangyong, ZHOU Mu, et al. DBSCAN based subspace matching for indoor cellular network fingerprint positioning algorithm[J]. Journal of Electronics & Information Technology, 2017, 39(5): 1157-1163. doi: 10.11999/JEIT160768.
[12]
CHEN H, LIU B, HUANG P, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks & Applications, 2012, 17(1): 90-99. doi: 10.1007/ s11036-010-0281-3.
[13]
WANG G and CHEN H. An importance sampling method for TDOA-based source localization[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1560-1568. doi: 10.1109/TWC.2011.030311.101011.
[14]
HUANG B, XIE L, and YANG Z. TDOA-based source localization with distance-dependent noises[J]. IEEE Transactions on Wireless Communications, 2015, 14(1): 468-480. doi: 10.1109/TWC.2014.2351798.
[15]
YANG Congfeng and WANG Fengshuai. Joint TDOA and AOA location algorithm[J]. Journal of Systems Engineering & Electronics, 2013, 24(2): 183-188. doi: 10.1109/JSEE.2013. 00023.
[16]
TIAN Zengshan, LI Ze, ZHOU Mu, et al. PILA: Sub-meter localization using CSI from commodity Wi-Fi devices[J]. Sensors, 2016, 16(10): 1664. doi: 10.3390/s16101664.
[17]
陈军. 高能效的分布式天线系统研究[D]. [博士论文], 华南理工大学, 2015.
CHEN Jun. Research on high energy-efficient distributed antenna system[D]. [Ph.D. dissertation], South China University of Technology, 2015.
[18]
ZHANG Qiulin and ZHU Xijun. Study of the thinning algorithm for thenar palmprint[C]. IEEE Computer Society, First Acis International Symposium on Cryptography, and Network Security, Data Mining and Knowledge Discovery, E-Commerce and ITS Applications, and Embedded Systems, 2010: 179-182. doi: 10.1109/CDEE.2010.100.
[19]
FENG Xingkui, LI Linyan, and YAN Zuquan. A new thinning algorithm for fingerprint image[J]. Journal of Image & Graphics, 1999, 4(10): 835-838.
[20]
LAM L, LEE S W, and SUEN C Y. Thinning methodologies A comprehensive survey[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14(9): 869-885. doi: 10.1109/34.161346.
[21]
LIU B, REN F, SHEN J, et al. Advanced self-correcting time synchronization in wireless sensor networks[J]. IEEE Communications Letters, 2010, 14(4): 309-311. doi: 10.1109/ LCOMM.2010.04.092364.