Building Layout Imaging Method Using the Inter-block Coupling Sparse Bayesian Learning
JIN Liangnian①② FENG Fei② LIU Qinghua② OUYANG Shan②
①(Guangxi Key Laboratory of Wireless Wideband Communication & Signal Processing, Guilin 541004, China) ②(Institute of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China)
Abstract:In through-wall radar building layout imaging, the existing extended target sparse imaging method can not effectively exploit the structural sparsity of the wall reflections in the scene, resulting in incoherent imaging and unobvious contour of walls. A sparse Bayesian learning method is proposed for building layout imaging by exploiting the inter-block coupling of sparse signal. On the basis of the hierarchical Gaussian prior model of block sparse signal characteristics, the inter-block coupling coefficient is further used to characterize the structured sparsity of the wall reflections. Then these coefficients are introduced into the hyperparameters controlling the prior distribution of sparse signal, thus this structured sparsity is transformed into the coupling relationship of these hyperparameters. Susequently, an Expectation-Maximization (EM) algorithm is developed to infer the Maximum A Posterior (MAP) estimate of these hyperparameters. The results of simulation and experiment show that the proposed method improves effectively the imaging quality of the building wall.
WANG Xueqian, LI Gang, Wan Qun, et al. Look-ahead hybrid matching pursuit for multipolarization through-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4072-4081. doi: 10.1109/TGRS. 2017.2687478.
[2]
BOUZERDOUM A, TANG V H, and PHUNG S L. A low-rank and jointly-sparse approach for multipolarization through-wall radar imaging[C]. IEEE Radar Conference (RadarConf), Seattle, 2017: 0263-0268. doi: 10.1109/ RADAR.2017.7944209.
[3]
JIA Yong, CUI Guolong, KONG Lingjiang, et al. Multichannel and multiview imaging approach to building layout determination of through-wall radar[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 970-974. doi: 10.1109/LGRS.2013. 2283778.
[4]
LU Biying, JIN Tian, WANG Wu, et al. Building layout imaging in through-the-wall MIMO applications[C]. IET International Radar Conference, Hangzhou, 2015: 1-5. doi: 10.1049/cp.2015.1326.
[5]
LAGUNAS E, AMIN M G, AHMAD F, et al. Determining building interior structures using compressive sensing[J]. Journal of Electronic Imaging, 2013, 22(2): 021003. doi: 10.1117/1.JEI.22.2. 021003.
[6]
ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
[7]
FANG Jun, SHEN Yanning, LI Hongbin, et al. Pattern- coupled sparse Bayesian learning for recovery of block-sparse signals[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 360-372. doi: 10.1109/TSP.2014.2375133.
[8]
WU Qisong, ZHANG Yimin, AMIN M G, et al. Multi-task bayesian compressive sensing exploiting intra-task dependency[J]. IEEE Signal Processing Letters, 2015, 22(4): 430-434. doi: 10.1109/LSP.2014.2360688.
[9]
DUAN Huiping, ZHANG Lizao, FANG Jun, et al. Pattern-coupled sparse Bayesian learning for inverse synthetic aperture radar imaging[J]. IEEE Signal Processing Letters, 2015, 22(11): 1995-1999. doi: 10.1109/LSP.2015. 2452412.
ZHANG Yan and JIN Liangnian. Extended target through walls radar imaging with TV constraints[J]. Radar Science and Technology, 2017, 15(3): 229-235. doi: 10.3969/j.issn. 1672-2337.2017.03.001.
[11]
CHEN Yijun, ZHANG Qun, LUO Ying, et al. Measurement matrix optimization for ISAR sparse imaging based on genetic algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1875-1879. doi: 10.1109/LGRS.2016. 2616352.
[12]
ZHANG Zhilin and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015. doi: 10.1109/TSP.2013.2241055.
[13]
TIVIVE F H C, BOUZERDOUM A, and AMIN M G. A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2108-2122. doi: 10.1109/TGRS.2014. 2355211.
[14]
YANG Jungang, HUANG Xiaotao, THOMPSON J, et al. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608-4620. doi: 10.1109/TGRS.2013. 2283054.
JIN Liangnian, SHEN Wenting, QIAN Yubin, et al. Adaptive sparse imaging approach for ultra-wideband through-the-wall radar in combined dictionaries[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1047-1054. doi: 10.11999/JEIT150884.