Abstract:In multi-target tracking algorithms under the Bayesian filtering framework, it is usually assumed that the priori knowledge of clutter is known. However, in practice, the knowledge of clutter is usually unknown, and the assumption of clutter may not agree with the truth, resulting in the filtering precision declining. For this problem, this paper addresses the problem of Cardinalized Probability Hypothesis Density (CPHD) filter with clutter estimation. Firstly, this paper presents a new CPHD filter with clutter estimation based on Dirichlet Process Mixture Model (DPMM). Thus, this DPMM--CPHD algorithm can reduce the estimation error of the clutter spatial distribution effectively by selecting an appropriate class number. Secondly, to solve the clutter overestimation and cardinality underestimation problems, a correction idea of the sample set via CPHD filter recursion is proposed. By introducing this idea to the DPMM--CPHD algorithm, an improved DPMM--CPHD algorithm is proposed to solve this intractability of errors on clutter number and target number. Simulation results show that the proposed algorithm can effectively estimate the unknown parameters of clutter and has a good performance of multi-target tracking.
杨丹, 姬红兵, 张永权. 未知杂波条件下样本集校正的势估计概率假设密度滤波算法[J]. 电子与信息学报, 2018, 40(4): 912-919.
YANG Dan, JI Hongbing, ZHANG Yongquan. A Cardinalized Probability Hypothesis Density Filter with Unknown Clutter Estimation Using Corrected Sample Set. JEIT, 2018, 40(4): 912-919.
LI Bo and PANG Fuwen. Improved probability hypothesis density filter for multitarget tracking[J]. Nonlinear Dynamics, 2014, 76(1): 367-376. doi: 10.1007/s11071-013-1131-1.
[2]
SI Weijian, WANG Liwei, and QU Zhiyu. A measurement- driven adaptive probability hypothesis density filter for multitarget tracking[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1689-1698. doi: 10.1016/j.cja.2015.10.004.
LIU Jun, LIU Yu, HE You, et al. Joint probabilistic data association algorithm based on all-neighbor fuzzy clustering in clutter[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1438-1445. doi: 10.11999/JEIT150849.
XU Cong'an, HE You, XIA Shutao, et al. Particle probability hypothesis density filter based on stochastic perturbation resampling[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2819-2825. doi: 10.11999/JEIT 160114.
YUAN Changshun, WANG Jun, SUN Jinping, et al. A multi- Bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics & Information Technology, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683.
[6]
YANG Jinlong and GE Hongwei. Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking[J]. Radar Sonar & Navigation Iet, 2013, 7(9): 959-967. doi: 10.1049/iet-rsn.2012. 0357.
YANG Feng and ZHANG Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics & Information Technology, 2017, 39(3): 634-639. doi: 10.11999/JEIT160467.
[8]
MAHLER Ronald. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 16(2): 1152-1178. doi: 10.1109 /TAES.2003.1261119.
WU Weihua, JIANG Jing, FENG Xun, et al. Multi-target tracking algorithm based on Gaussian mixture cardinalized probability hypothesis density for pulse doppler radar[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232.
[10]
VO Ba Tuong, VO Ba Ngu, and CANTONI Antonio. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567. doi: 10.1109/TSP.2007. 894241.
[11]
MAHLER Ronald, VO Ba Tuong, and VO Ba Ngu. CPHD filtering with unknown clutter rate and detection profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513. doi: 10.1109/TSP.2011.2128316.
[12]
BEARD Michael, VO Ba Tuong, and VO Ba Ngu. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J]. IEEE Signal Processing Letters, 2013, 20(4): 323-326. doi: 10.1109/LSP.2013.2244594.
[13]
LIAN Feng, HAN Chongzhao, and LIU Weifeng. Estimating unknown clutter intensity for PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066-2078. doi: 10.1109/TAES.2010.5595616.
[14]
LIU Weifeng, CUI Hailong, and WEN Chenglin. A time- varying clutter intensity estimation algorithm by using Gibbs sampler and BIC[C]. IEEE International Conference on Information Fusion, Heidelberg, Germany, 2016: 1-8.
[15]
NSOESIE Elaine O, LEMAN Scotland C, and MARATHE Marathe V. A Dirichlet process model for classifying and forecasting epidemic curves[J]. Bmc Infectious Diseases, 2014, 14(2): 1-12. doi: 10.1186/1471-2334-14-12.
[16]
WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
[17]
MUTHUKUMARANA Saman, and TIWARI Ram C. Meta- analysis using Dirichlet process[J]. Statistical Methods in Medical Research, 2016, 25(1): 352. doi: 10.1177/ 0962280212453891.
[18]
SUN Xing, YUNG Nelson H C, and LAM Edmund Y. Unsupervised tracking with the doubly stochastic Dirichlet process mixture model[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2594-2599. doi: 10.1109 /TITS.2016.2518212.
[19]
BLEI D M, GRIFFITHS T L, and JORDAN M I. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies[J]. Journal of the ACM, 2010, 57(2): 1-30. doi: 10.1145/1667053.1667056.