Multiple Source Parameter Estimation for Rotating Interferometer Using Circular Array Processing
XIN Jinlong① LIAO Guisheng① YANG Zhiwei① XIE Hu②
①(National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China) ②(Xi’an Branch, China Academy of Space Technology, Xi’an 710100, China)
Abstract:Focus on the problem of phase ambiguity and the issue that it is impossible to estimate the unambiguous angles of multiple sources with the same frequency and time of arrival. An approach for multiple sources parameters estimation with rotating interferometer using virtual circular array processing is proposed in this paper. Firstly, the virtual circular array data is constructed by taking conjugate multiplication of the two channel data received by the rotating interferometer. Then, the virtue linear array data is obtained by employing beamspace transformation, which performs mapping from element-space to beamspace domain. Finally, the unambiguous angles of the multiple emitters are achieved in beamspace domain. Compared with conventional rotating interferometer methods, the proposed method can deal with the problem of unambiguous Direction Of Arrival (DOA) estimation of multiple emitters with only two receiving channels. The validity of the proposed method is verified by the simulation results.
DYBDAL B. Monopulse resolution in interferometer[J]. IEEE Transactions on Aerospace and Electronic System, 1986, 22(1): 177-183. doi: 10.1109/TAES.1986.310752.
ZHOU Yaqiang and HUANGFU Kan. Solving ambiguity problem of digitized multi-baseline interferometer under noisy circumstance[J]. Journal on Communications, 2005, 26(8): 16-21. doi: 10.3321/j.issn.1000-436X.2005.08.003.
GONG Xiangyi, YUAN Junquan, and SU Linghua. A multi-pare unwrap ambiguity of interferometer array for estimation of direction of arrival[J]. Journal of Electronics & Information Technology, 2006, 28(1): 55-59.
[4]
MACPHIE R H and YOON T H. On using the compound interferometer to obtain the power pattern of a conventional receiving array[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3356-3359. doi: 10.1109/TAP.2009. 2029380.
ZHOU Huan, LI Haitao, CHEN Shaowu, et al. Resolving carrier phase ambiguity of deep space with combination of multi-baseline[J]. Journal of Astronautics, 2015, 36(8): 947-953. doi: 10.3873/j.issn.1000-1328.2015.08.012.
[6]
LEE J H, LEE J H, and WOO J M. Method for obtaining three-and four-element array spacing for interferometer direction-finding system[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 897-900. doi: 10.1109/LAWP. 2015.2479224.
[7]
DOAN S V, VESELY J, JANU P, et al. Algorithm for obtaining high accurate phase interferometer[C]. 26th International Conference on Radioelektronika, Košice, Slovak Republic, 2016: 433-437. doi: 10.1109/RADIOELEK.2016. 7477374.
[8]
DOAN S V, VESELY J, JANU P, et al. Optimized algorithm for solving phase interferometer ambiguity[C]. 17th International Radar Symposium (IRS), Krakow, Poland, 2016: 1-6. doi: 10.1109/IRS.2016.7497353.
[9]
KAWASE S. Radio interferometer for geosynchronous satellite direction finding[J]. IEEE Transactions on Aerospace and Electronic System, 2007, 43(2): 443-449. doi: 10.1109/ TAES.2007.4285345.
SI Weijian and CHENG Wei. Study on solving ambiguity method of rolling interferometer and implemention[J]. Journal of Projectile, Rockets, Missile and Guidance, 2010, 30(3): 199-202. doi: 10.3969/j.issn.1673-9728.2010.03.059.
LIU Lutao and SI Xicai. Analysis of DOA algorithm by open loop method of rotating phase interferometer system[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12(5): 419-424. doi: 10.3969 /j.issn.1009-3443.2011.05.003.
LI Teng, GUO Fucheng, and JIANG Wenli. Multiple hypothesis NLS location algorithm based on ambiguous phase difference measured by a rotating interferometer[J]. Journal of Electronics & Information Technology, 2012, 34(4): 956-961. doi: 10.3724/SP.J 1146.2011.00699.
ZHANG Min, GUO Fucheng, LI Teng, et al. A direction finding method and analysis based on the rotated long baseline interferometer[J]. Acta Electronica Sinica, 2013, 41(12): 2422-2429. doi: 10.3969/j.issn.0372-2112.2013.12. 016.
[14]
LIU Zhangmeng and GUO Fucheng. Azimuth and elevation estimation with rotating long-baseline interferometers[J]. IEEE Transactions on Signal Processing, 2015, 63(9): 2405-2419. doi: 10.1109/TSP.2015.2405506.
[15]
MATHEWS C P and ZOLTOWSKI M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2395-2407. doi: 10.1109/78.317861.