Abstract:A fast algorithm based on the effective FrFT is proposed to realize the detection and parameter estimation of Linear Frequency Modulation (LFM) signal, since the traditional algorithms have a great computational burden. The effective FrFT is first analyzed, and pointed out to have problems in choosing the rotation angles, being easily affected by initial frequency, and poor anti-noise performance. Faced with the above problems, a modified power spectrum smooth filtering method is used to improve the effective FrFT algorithm. The theoretical analysis indicates that the proposed method based on effective FrFT can realize the detection and parameter estimation of LFM signal in low SNR condition with only three rotation angles. Furthermore, the computational cost is greatly reduced under the guarantee of the same parameter estimation accuracy compared to traditional FrFT. The simulation results verify the effectiveness of the proposed algorithm.
黄响, 唐世阳, 张林让, 谷亚彬. 一种基于高效FrFT的LFM信号检测与参数估计快速算法[J]. 电子与信息学报, 2017, 39(12): 2905-2911.
HUANG Xiang, TANG Shiyang, ZHANG Linrang, GU Yabin. A Fast Algorithm of LFM Signal Detection and Parameter Estimation Based on Efficient FrFT. JEIT, 2017, 39(12): 2905-2911.
SAHA S and KAY A M. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 224-230. doi: 10.1109/78.978378.
[2]
CZARNECKI K and MOSZYNSLI M. A novel method of local chirp-rate estimation of LFM chirp signals in the time-frequency domain[C]. International Conference on Telecommunications and Signal Processing, Italy, Rome, 2013: 704-708. doi: 10.1109/TSP.2013.6614028.
LI Xiukun and WU Yushuang. Cross-term removal of Wigner-Ville distribution for multi-component LFM signals [J]. Acta Electronica Sinica, 2017, 45(2): 315-320. doi: 10.3969/j.issn. 0372-2112.2017.02.008.
[4]
BOASHASH B and OUELHA S. An improved design of high-resolution quadratic time-frequency distribution for the analysis of nonstationary multicomponent signal using directional compact kernels[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2701-2713. doi: 10.1109/TSP.2017. 2669899.
[5]
WOOD J C and BARRY D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3166-3177. doi: 10.1109/78.330375.
[6]
BARBAROSSA S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1511-1515. doi: 10.1109/78.388866.
LIU Ying, CHEN Dianren, CHEN Lei et al. Parameter estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1136-1140. doi: 10.11999/JEIT 140876.
[8]
WANG M, CHAN A K, and CHUI C K. Linear frequency- modulated signal detection using Radon-ambiguity transform [J]. IEEE Transactions on Signal Processing, 1998, 43(6): 571-586. doi: 10.1109/78.661326.
QI Lin, TAO Ran, ZHOU Siyong, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J]. Science in China (Series E), 2003, 33(8): 750-759. doi: 10.3321/j.issn:1006- 9275.2003.08.008.
CHEN Yanli, GUO Lianghao, and GONG Zaixiao. The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency- modulated signal[J]. Acta Acustica, 2015, 40(6): 761-771. doi: 10.15949/j.cnki.0371-0025.2015.06.001.
[11]
ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi, et al. Efficient compressed sensing method for moving targets imaging by exploiting the geometry information of the defocused results[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 517-521. doi: 10.1109/LGRS.2014. 2349035.
[12]
ALMEIDA L B. The fractional Fourier transform and time- frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084-3091. doi: 10.1109/78.330368.
ZHAO Xinghao, DENG Bing, and TAO Ran. Dimensional normalization in the digital computation of the fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(4): 360-364. doi: 10.3969/j.issn.1001- 0645.2005.04.019.
ZHANG Wenwen and LIU Liping. A new recognition method for phase-shift keying signals[J]. Journal of Harbin Engineering University, 2009, 30(10): 1204-1208. doi: 10.3969 /j.issn.1006-7043.2009.10.023.