Abstract:Traditional Compressive Sensing (CS)-based localization methods assume all targets fall on a pre- sampled and fixed grid. There will be mismatch between the adopted and actual sparsifying dictionaries when some targets fall off the grid, leading these methods to perform poorly. To address this problem, an efficient dynamic dictionary algorithm is developed for CS-based localization. To achieve this, the actual sparsifying dictionary is modeled as a parameterized dictionary with the grid viewed as adjustable parameters. By doing so, the localization problem is formulated as a joint sparse reconstruction and parameter estimation problem. Additionally, the non-convex parameter optimization problem is transformed into a tractable convex problem by approximating the actual sparsifying dictionary with its first Taylor expansion. Extensive simulation results show that the proposed dynamic dictionary algorithm provides better performance than the state-of-the-art fixed dictionary algorithms.
AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: A survey[J]. Computer Networks, 2002, 38(4): 393-422. doi: 10.1016/S1389-1286(01)00302-4.
[2]
LIU Yunhao, YANG Zheng, WANG Xiaoping, et al. Location, localization, and localizability[J]. Journal of Computer Science and Technology, 2010, 25(2): 274-297. doi: 10.1007/ s11390-010-9324-2
[3]
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582.
[4]
CANDE E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006: 1433-1452.
[5]
CEVHER V, DUARTE M, and BARANIUK R G. Distributed target localization via spatial sparsity[C]. Proceedings of the European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, 2008: 25-29.
[6]
FENG C, VALAEE S, and TAN Z. Multiple target localization using compressive sensing[C]. IEEE Global Telecommunications Conference (GLOBECOM), Honolulu, HI, 2009: 1-6. doi: 10.1109/GLOCOM.2009.5425808.
[7]
ZHANG B, CHEN X, ZHANG N, et al. Sparse target counting and localization in sensor networks based on compressive sensing[C]. IEEE International Conference on Computer Communications (INFOCOM), Shanghai, China, 2011: 2255-2263. doi: 10.1109/INFCOM.2011.5935041.
HE Fenghang, YU Zhijun, and LIU Haitao. Multiple target localization via compressed sensing in wireless sensor networks[J]. Journal of Electronics & Information Technology, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146. 2011.00405.
ZHAO Chunhui, XU Yunlong, and HUANG Hui. Localization algorithm of sparse targets based on LU- decomposition[J]. Journal of Electronics & Information Technology, 2013, 35(9): 2234-2239. doi: 10.3724/SP.J.1146. 2012.01527.
LI Yibing, HUANG Hui, YE Fang, et al. Target localization via compressed sensing based on SVD[J]. Journal of Central South University (Natural Science), 2014, 45(5): 1516-1521.
WANG Tingting, KE Wei, and SUN Chao. Environmental- adaptive RSS-based indoor localization[J]. Journal on Communications, 2014, 35(10): 210-217. doi: 10.3969/j.issn. 1000-436x.2014.10.024.
[12]
LIU L, CUI T, and LÜ W. A range-free multiple target localization algorithm using compressive sensing theory in wireless sensor networks[C]. IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Philadelphia, Pennsylvania, USA, 2014: 690-695. doi: 10.1109/MASS.2014.56.
LÜ Weijie, CUI Tingting, LIU Chao, et al. A new multiple target localization based on compressed sensing theory in wsn[J]. System Simulation Technology, 2015, 11(1): 6-13. doi: 10.3969/j.issn.1673-1964.2015.01.002.
SUN Baoming, GUO Yan, LI Ning, et al. Mobile target localization algorithm using compressive sensing in wireless sensor networks[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1858-1864. doi: 10.11999/JEIT 151203.
[15]
YANG Z and XIE L. A weighted atomic norm approach to spectral super-resolution with probabilistic priors[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 4598-4602. doi: 10.1109/ICASSP.2016.7472548.
[16]
MISHRA K V, CHO M, KRUGER A, et al. Spectral super-resolution with prior knowledge[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5342-5357. doi: 10.1109/ TSP.2015.2452223.
CHEN Wei, YAN Jun, and ZHU Weiping. Wireless sensor network location algorithm using compressive sensing and multilateral measurements[J]. Journal of Signal Processing, 2014, 30(6): 728-735. doi: 10.3969/j.issn.1003-0530.2014.06. 016.
[18]
GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming[OL]. http://cvxr.com/cvx/, 2011.