To solve the problem of coherent sources using sparse reconstruction method, this paper proposes an improved method for solving coherent sources using the eigenvectors corresponding to the largest eigenvalues after Singular Value Decomposition (SVD) decomposition of received data. The method reconstructs the angle by iterating the feature vector, and reconstructs the angle information accurately without knowing the number of the signal source. Compared with the classical SVD algorithm, the operation speed is faster, and the sparse reconstruction effect is better. Theoretical analysis and simulation results verify the good performance of the algorithm.
季正燕,陈辉,张佳佳,李帅,陆晓飞. 一种基于奇异值分解的解相干算法[J]. 电子与信息学报, 2017, 39(8): 1913-1918.
JI Zhengyan, CHEN Hui, ZHANG Jiajia, LI Shuai, LU Xiaofei. Decorrelation Algorithm Based on Singular Value Decomposition. JEIT, 2017, 39(8): 1913-1918.
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
[2]
GU Jianfeng, ZHU Weiping, and SWAMY M NS. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182. doi: 10.1109/TSP.2015.2389762.
CAI Jingjing, ZONG Ru, and CAI Hui. DOA estimation via sparse representation of the smoothed array covariance matrix[J]. Journal of Electronics & Information Technology, 2016, 38(1): 168-173. doi: 10.11999/JEIT150538.
[4]
WU Xiaohuan, ZHU Weiping, YAN Jun, et al. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2016, 16(7): 2004-2016. doi: 10.1109/JSEN.2015.2508059.
[5]
LU Wang, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse Bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275-289. doi: 10.1109/TSP.2015. 2481790.
[6]
WANG Xiuhong, MAO Xingpeng, and ZHANG Naitong. Single-snap DOA estimation based on compressed sensing in pulse compression radar system[J]. Systems Engineering & Electronics, 2014, 36(9): 1737-1743. doi: 10.1109/RADAR. 2014.6875648.
[7]
ZHAO Tan. Sparse direction of arrival estimation using co-prime arrays with off-grid target[J]. IEEE Signal Processing Letters, 2014, 21(1): 26-29. doi: 10.1109/LSP.2013. 2289740.
JI Zhengyan, CHEN Hui, and ZHANG Jiajia. Two ameliorated de-coherence algorithms in sparse reconstruction based on SVD[J]. Journal of Air Force Early Warning Academy, 2017, 31(1): 5-10. doi: 10.3969/j.issn.2095-5839. 2017.01.002.
[9]
XU D, DU L, LIU H, et al. Compressive sensing of stepped- frequency radar based on transfer learning[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3076-3087. doi: 10.1109/TSP.2015.2421473.
[10]
MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. doi: 10.1109/TSP.2005.850882.
[11]
STOICA P, BABU P, LI J, et al. A sparse covariance-based estimation method for array processing[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629-638. doi: 10.1109/TSP.2010.2090525.
[12]
YIN Jihao and CHEN Tianqi. Direction-of-arrival estimation using a sparse representation of array covariance vectors[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4494. doi: 10.1109/TSP.2011.2158425.
[13]
HAN Shunan, LI Dongsheng, and WANG Xiao. Novel approach for DOA estimation based on sparse reconstruction of eigenvector[J]. Modern Defence Technology, 2015, 43(4): 161-165. doi: 10.3969/j. issn.1009-086x.2015.04.027.
[14]
WEI Dong and ZHOU Jianpeng. Application of K-SVD and OMP algorithm on ultrasonic signal denoising[J]. Journal of Applied Acoustics, 2016, 35(2): 95-101. doi: 10.11684/j.issn. 1000-310X.2016.02.001
[15]
WANG Chunguang, LIU Jinjiang, and SUN Jixiang. Compression algorithm for electrocardiograms based on sparse decomposition[J]. Chinses Journal of Biomedical Engineering, 2008, 27(1): 13-17. doi: 10.1007/s11460-009- 0009-y.
[16]
TROPP J and GILBERT A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2008, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.