Extremum Median Filter Map Denoising Algorithm Based on Energy Function
WANG Min①② ZHAO Jinyu① CHEN Tao① CUI Bochuan①② GAO Yang①②
①(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China) ②(University of Chinese Academy of Sciences, Beijing 100049, China)
利用地基观测相机拍摄的以深空为背景的星图受星空复杂背景的影响,往往具有较高的噪声水平。同时由于星图主要由恒星、空间目标和星空背景噪声组成,且成点状分布,星图目标和噪声呈现较大的相似性,传统的图像去噪算法并不适用于星图。为此,该文提出一种基于能量函数的极值中值滤波去噪算法,该算法在去除星图椒盐噪声的同时能够较好地保持图像目标信息。该方法针对疑似噪声点采用二次检测的方式,并且结合改进的自适应中值滤波和能量函数模型进行灰度值恢复。该文分别使用仿真试验和真实星图处理试验对该方法进行验证,在客观评价中,图像峰值信噪比PSNR(Peak Signal to Noise Ratio)最高可提高3倍多,均方误差MSE(Mean Squared Error)减小为加噪图像的 。试验结果表明,该方法可有效地降低传统方法的噪声误检问题,同时提高噪声图像的恢复精度,非常适合星图噪声的去除。
The star maps acquired by the ground-based cameras are susceptible to the complex background of the starry sky and thus have high noise levels. In addition, the targets in star maps are similar to the noises due to their punctate shapes. As a result, the traditional image denoising method is not applicable to star maps. A new adaptive extremum median filtering denoising algorithm is put forward based on energy function, which can effectively remove the salt and pepper noise of the star maps and keep the small target information at the same time. This method employs a twice-check strategy to reduce the false detection ratio of noisy pixels and uses the improved adaptive median filter and the energy function model to recovery noise imagery. The simulated and real star map experiments show that, the Peak Signal to Noise Ratio (PSNR) is improved about 3 times and the Mean Squared Error (MSE) is reduced by in the terms of objective evaluations, the proposed method can effectively improve the denoising result and thus is applicable to star maps.
王敏,赵金宇,陈涛,崔博川,高扬. 基于能量函数的极值中值滤波星图去噪算法[J]. 电子与信息学报, 2017, 39(6): 1387-1393.
WANG Min, ZHAO Jinyu, CHEN Tao, CUI Bochuan, GAO Yang. Extremum Median Filter Map Denoising Algorithm Based on Energy Function. JEIT, 2017, 39(6): 1387-1393.
NIKOLOVA M. A varational approach to remove outliers and impulse noise[J]. Journal of Mathematical Imaging and Version, 2004, 20(1/2): 99-120. doi: 10.1023/B:JMIV. 0000011326.88682.e5.
WEI Wei and LIU Enhai. Preprocessing of infrared star map and position accuracy analysis of star point[J]. Infrared and Laser Engineerring, 2014, 43(3): 991-996. doi: 10.3969/j.issn. 1007-2276.2014.03.057.
ZHOU Lingfang and CHEN Fei. Adaptive slope difference algorithm for filtering salt and pepper noise in image[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(4): 695-700. doi: 10.3788/YJYXS 20153004.0695.
HUANG Cunling, DUAN Jin, ZHU Yong, et al. An improved extremum and median filtering algorithm[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2013, 36(3/4): 141-143. doi: 10.3969/j.issn. 1672-9870.2013.03.042.
WANG Hongmei, LI Yanjun, and ZHANG Ke. An image filter algorithm based on extremum detection[J]. Laser & Infrared, 2007, 37(10): 1117-1119. doi: 10.3969/j.issn.1001- 5078.2007.10.026.
WANG Yiyan and WANG Xuan. Improved median filter algorithm based on two-stage noise detection[J]. Computer Engineering and Design, 2008, 29(11): 2841-2843. doi: 10.16208/j.issn 1000-7024.2008.11.029.
[8]
CHAN R H, HO C W, and NIKOLOVA M. Convergence of Newton’s method for a minimization problem in impulsenoise removal[J]. Journal of Computational Mathematics, 2004, 22(2): 168-177.
ZHONG Tao, ZHANG Jianguo, and ZUO Junyan. An improvement median filter algorithm and its application[J]. Journal of Yunnan University(Natural Science Edition), 2015, 37(4): 505-510. doi: 10.7540/j.ynu.20140432.
WANG Xiaokai and LI Feng. Improved adaptive median filtering[J]. Computer Engineering and Applications, 2010, 46(3): 175-176. doi: 10.3778/j.issn.1002-8331.2010.03.053.
WANG Mingjia, ZHANG Xuguang, HAN Guangliang, et al. Elimination of impulse noise by auto-adapted weight filter[J]. Optics and Precision Engineering, 2007, 15(5): 779-783. doi: 10.3321/j.issn:1004-924X.2007.05.026.
LI Yang, ZHANG Xin, ZHANG Tao, et al. An adaptive median filter algorithm for preserving image edges[J]. Communications Technology, 2015, 48(12): 1367-1371. doi: 10.3969/j.issn.1002-0802.2015.12. 010.
[13]
CHAN R H, HO C W, and NIKOLOVA M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1479-1485. doi: 10.1109/TIP. 2005.852196.
[14]
PERREAULT S and HÉBERT P. Median filtering in constant time[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2389-2394. doi: 10.1109/TIP.2007.902329.
[15]
YANG Qingxiong, AHUJA N , and TAN K H. Constant time median and bilateral filtering[J]. International Journal of Computer Vision, 2015, 112(3): 307-318. doi: 10.1007/sl1263- 014-0764-y.
[16]
ZHAO Hanli, GAO Dandan, WANG Ming, et al. Real-time edge-aware weighted median filtering on the GPU[J]. Computers & Graphics, 2016, 61: 11-18. doi: 10.1016/j.cag. 2016.09.003.
YANG Wenbo, MA Tianwei, and LIU Jian. Elimination of impulse noise by non-local variation inpainting method[J]. Chinese Optics, 2013, 6(6): 876-884. doi: 10.3788/CO. 20130606.0876.