Model and Analysis of Atmospheric Turbulence Index Structure Parameter in the Single-shaft Tunnel of Rail Transit Environment
ZHAO Hengkai①② FU Xintao①
①(School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China) ②(Key Laboratory of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072, China)
The change of the atmospheric turbulence affects the transmission of microwave. In order to study the impact of turbulence on the microwave transmission in rail transit tunnel environment, this paper combines the motion characteristics of the piston wind with the calculation method of atmospheric refractive index structure parameter. With investigation into the influences of tunnel environmental temperature, length of tunnel, blockage ratio, and piston wind speed on the atmospheric refractive index structure parameter, an atmospheric refractive index structure parameter model is established in the single-shaft rail transit tunnel environment. In this paper, the distribution of the atmospheric refractive index structure constant in rail transit tunnel environment is analyzed, and the change of atmospheric turbulence refractive index structure parameter in case of the train through the single-shaft tunnel with that of no single-shaft tunnel is compared based on the actual tunnel temperature scene. The model provides a theoretical reference for the study of radio refractive index structure constant in rail transit tunnel environment.
赵恒凯,付新涛. 轨道交通单竖井隧道环境的空气湍流折射率结构常数模型及分析[J]. 电子与信息学报, 2017, 39(4): 887-892.
ZHAO Hengkai, FU Xintao. Model and Analysis of Atmospheric Turbulence Index Structure Parameter in the Single-shaft Tunnel of Rail Transit Environment. JEIT, 2017, 39(4): 887-892.
WU Xiaoqing, WANG Yingjian, ZENG Zongyong, et al. Numerical model of atmospheric optical refractive index structure parameter[J]. High Power Laser and Particle Beams, 2002, 14(6): 819-822.
[2]
LI Yujie, ZHU Wenyue, and WU Xiaoqing. Equivalent refractive-index structure constant of non-Kolmogorov turbulence[J]. Optics Express, 2015, 23(18): 23004-23012. doi: 10.1364/OE.23.023004.
[3]
NESSEL J A and MANNING R M. Derivation of microwave refractive index structure constant of the atmosphere from K-band interferometric phase measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5590-5598. doi: 10.1109/TAP.2014. 2347997.
ZHANG Yongjing and ZHAO Dongdong. Structure parameter estimation of radio wave refractive index in rail transit tunnel based on FLUENT[J]. Journal of Shanghai University (Natural Science Edition), 2014, 20(4): 458-465. doi: 10.3969/j.issn.1007-2861.2013.07.031.
[5]
YUAN R, LUO T, SUN J, et al. A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer[J]. Atmospheric Chemistry & Physics, 2015, 15(5): 2521-2531. doi: 10.5194/acp-15-2521-2015.
[6]
BAYKAL Y. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant[J]. Applied Optics, 2016, 55(6): 1228-1231. doi: 10.1364/AO.55.001228.
[7]
KUNKEL K E and WALTERS D L. Modeling the diurnal dependence of the optical refractive index structure parameter[J]. Journal of Geophysical Research Oceans, 1983, 88(C15): 10999-11004. doi: 10.1029/JC088iC15p 10999.
SONG Conghe. The application of Bowen Ratio-energy balance method and erro analysis[J]. Hebei Journal of Forestry and Orchard Research, 1993, 8(1): 85-96.
[9]
MANNING ROBERT M and VVHNALEK B. A microwave radiometric method to obtain the average path profile of atmospheric temperature and humidity structure parameters and its application to optical propagation system assessment [C]. Conference on Free-Space Laser Communication and Atmospheric Propagation XXVII, San Francisco, CA, USA, 2015: 539-545. doi: 10.1117/12.2080258.
CAI Jun, WU Xiaoqing, LI Xuebin, et al. Estimation model of atmospheric optical turbulence and its similarity functions [J]. High Power Laser and Particle Beams, 2016, 28(7): 1-5. doi: 10.11884/HPLPB201527.071002.
[11]
TUNICK A. CN2 model to calculate the micrometeorological influences on the refractive index structure parameter[J]. Environmental Modeling & Software, 2003, 18(2): 165-171. doi: 10.1016/S1364-8152(02)00052-X.
[12]
DYER A J. A review of flux-profile relationships[J]. Boundary-Layer Meteorol, 1974, 7(3): 363-372. doi: 10.1007/ BF00240838.
[13]
HICKS B B. Wind profile relationships from the ‘wangara’ experiment[J]. Quarterly Journal of the Royal Meteorological Society, 1976, 102(433): 535-551. doi: 10.1002/qj.4971024 3304.
CHEN Wenying and NIE Houxian. Discussion on calculation formula of piston wind in a train with shaft tunnel[J]. Railway Standard Design, 1981(4): 15-19. doi: 10.13238/j.issn.1004- 2954.1981.04.005.
ZENG Zhen, KUANG Yadi, GONG Mingjie, et al. The analyzing of temperature distribution in the metro tummel [C]. Proceedings of the 2014th Railway HVAC Annual Conference, Shanghai, 2015: 147-156.
ZHU Zuxi. Review on waterproof technology of shield tunnel lining in Shanghai Metro Line 1[J]. Underground Engineering and Tunnels, 1993(4): 54-60. doi: 10.13547/j.cnki.dxgcysd. 1993.04.012.
GONG Wei, SHEN Kai, and WU Xiping. Analysis of heat load in subway running tunnel[J]. Underground Engineering and Tunnels, 2011(3): 31-34. doi: 10.13547/j.cnki.dxgcysd. 2011.03.003.