In highly squinted and high resolution SAR, the data receiving range bin can be continually adjusted to minimize the sampled data in echo collection, but the staggered range cell migration needs extra processing to be eliminated. To enlarge the imaging scene size with a relatively high resolution, sliding spotlight working mode could be used, yet this mode may cause azimuth ambiguity. In this paper, the key technique of highly squinted sliding spotlight SAR imaging with varied receiving range bin is investigated, a sub-aperture based upsampling ambiguity-resolving method is utilized and a new beam segmentation based 2-step PFA method is proposed, which incorporates the stagger compensation to the procedure of motion compensation. The method performs beam segmentation via digital spotlighting preprocessing firstly to generate multiple full-resolution phase histories of smaller image patches, which allow the approximation of planar wavefront in traditional PFA. PFA is used to produce focused fine resolution image for each small patch.Finally, all focused image patches are seamed together to get a full image. This divide-and-conquer approach breaks the image size limit in traditional PFA, and extensively enlarges the valid focused scene suitable for sliding spotlight mode. This new algorithm is validated to be effective and efficient via real data experiments.
聂鑫. 变波门大斜视滑动聚束SAR成像关键技术分析[J]. 电子与信息学报, 2016, 38(12): 3122-3128.
NIE Xin. Research on Key Technique of Highly Squinted Sliding Spotlight SAR Imaging with Varied Receiving Range Bin. JEIT, 2016, 38(12): 3122-3128.
TSUNODA S I and PACE F. Lynx: A high-resolution synthetic aperture radar[J]. SPIE, 1999, 3704: 1-8. doi: 10.1117/12.354602.
[2]
SLOAN G R and DUBBERT D F. Affordable miniaturized SAR for tactical UAV applications[J]. SPIE, 2004, 5408: 74-83. doi: 10.1117/12.541564.
[3]
LECOZ D, DUPAS J, DUPLESSIS O, et al. Development status of the ONERA airborne SAR facilities (RAMSES)[C]. The European Conference on Synthetic Aperture Radar, Astrium Friedrichshafen, 1998.
[4]
FERNANDEZ P D. The ONENRA RAMSES SAR system[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002, 3: 1723-1725.
[5]
CANTALLOUBE H and COLIN E. The ONERA RAMSES SAR: Latest significant results and future developments[C]. IEEE Radar Conference, New York, USA, 2006: 518-524. doi: 10.1109/RADAR.2006.1631849.
[6]
CANTALLOUBE H and FERNANDEZ P D. Airborne X-band SAR imaging with resolution: Technical challenge and preliminary results[J]. IEE Proceedings Radar, Sonar and Navigation, 2006, 153(2): 163-176. doi: 10.1049/ ip-rsn:20045097.
[7]
ENDER J H G and BERENS P. Multi channel SAR/MTI system development at FGAN: From AER to PAMIR[C]. The International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1679-1701. doi: 10.1109/IGARSS. 2002.1026225.
[8]
BRENNER A R and ENDER J H G. First experimental results achieved with the new very wideband SAR system PAMIR[C]. The European Conference on Synthetic Aperture Radar, Cologne, Germany, 2002: 4-6.
MINH P N. Range cell migration correction for phase error compensation of highly squinted SAR[C]. The European Conference on Synthetic Aperture Radar, 2014, Berlin, Germany, 2014: 81-84.
[11]
YANG Jun, SUN Guangcai, and XING Mengdao. A subaperture imaging algorithm to highly squinted TOPS SAR[C]. The European Conference on Synthetic Aperture Radar, 2014, Berlin, Germany, 2014: 398-401.
[12]
WU Yufeng, XING Mengdao, SUN Guangcai, et al. An azimuth resampling based imaging algorithm for highly squinted sliding spotlight and TOPS SAR[C]. The European Conference on Synthetic Aperture Radar, 2014, Berlin, Germany, 2014: 406-409.
[13]
SUN Zhichao, WU Junjie, LI Zhongyu, et al. Highly squint SAR data focusing based on keystone transform and azimuth extended nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(1): 145-149. doi: 10.1109/ LGRS.2014.2329554.
[14]
SOUMEKH M. Synthetic Aperture Radar Signal Processing with Matlab Algorithm[M]. New York: Wiley, 1999: Chapter 1.
[15]
SOUMEKH M, Nobles D A, Wicks M C, et al. Signal processing of wide bandwidth and wide beamwidth P-3 SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1122-1141. doi: 10.1109/7.976954.
[16]
聂鑫. SAR超高分辨率成像算法研究[D]. [博士论文], 南京航空航天大学, 2010.
NIE Xin. Study on ultra-high resolution SAR imaging algorithms[D]. [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, 2010.