Second-order Consensus Time Synchronization for Wireless Sensor Networks
HUANG Yourui① CHEN Zhenping② LI Dequan③ TANG Chaoli① QU Liguo④
①(School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China) ②(School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China) ③(School of Science, Anhui University of Science and Technology, Huainan 232001, China) ④(College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China)
考虑到在无线传感器网络中,新节点的加入或老节点的死亡均会导致拓扑呈动态变化,该文研究一种完全分布式二阶一致性时间同步(Second-Order Consensus Time Synchronization, SOCTS)算法。将节点的时钟特性建模成二阶状态方程,按照伪同步周期广播节点的本地虚拟时间,根据邻居节点的本地虚拟时间的不一致来构造同步控制输入;通过坐标变换将网络的一致性时间同步问题转化为变换系统的稳定性问题,理论分析了SOCTS算法的收敛性和收敛条件,并研究了影响SOCTS算法收敛速度的因素。通过数值仿真实验验证了所提方法的有效性。
Since in wireless sensor networks, the joint of new nodes or the death of old nodes lead to a dynamic topology, this paper studies one completely distributed Second-Order Consensus Time Synchronization (SOCTS) algorithm. The clock feature of each node is modeled into a second order state equation, and the local virtual time is broadcasted according to the pseudo synchronous cycle, Moreover, the synchronization control input is constructed according to the disagreement on local virtual time among neighboring nodes. By virtue of the matrix transformation, the network time synchronization issue is turned into the stability issue of some transformed system, and the convergence and convergence condition for the SOCTS algorithm are analyzed theoretically. Moreover, the factors that influence the convergence rate of the SOCTS algorithm are investigated. Finally, the effectiveness of the proposed method is verified by numerical simulations.
LI Peng, WANG Jianxin, and CAO Jiannong. Abnormal event detection scheme based on compressive sensing and GM (1,1) in wireless sensor networks[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219.
[2]
LIU Bin, REN Fengyuan, SHEN Junyang, et al. Advanced self-correcting time synchronization in wireless sensor networks[J]. IEEE Communications Letters, 2010, 14(4): 309-311. doi: 10.1109/LCOMM.2010.04.092364.
WANG Yijun, QIAN Zhihong, WANG Guiqin, et al. Research on energy-efficient time synchronization algorithm for wireless sensor networks[J]. Journal of Electronics & Information Technology, 2012, 34(9): 2174-2179. doi: 10. 3724/sp.j.1146.2012.00236.
[4]
ZHANG Weile, YIN Qinye, CHEN Hongyang, et al. Distri- buted angle estimation for localization in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2012, 12(2): 527-537. doi: 10.1109/ GLOCOM.2010.5683803.
[5]
LI Dequan, LIU Qipeng, WANG Xiaofan, et al. Consensus seeking over directed networks with limited information communication[J]. Automatica, 2013, 49(2): 610-618. doi: 10.1016/j.automatica.2012.11.041.
XI Yugeng and LI Xiaoli. Hierarchical structure design for multi-agent consensus[J]. Control Theory and Applications, 2015, 32(9): 1191-1199. doi: 10.7641/CTA.2015.50393.
[7]
HE Wangli, ZHANG Biao, HAN Qianlong, et al. Leader- following consensus of nonlinear multiagent systems with stochastic sampling[J]. IEEE Transactions on Cybernetics, 2016, 99: 1-12. doi: 10.1109/TCYB.2015.2514119.
[8]
LUCA S and FEDERICO F. Average timesynch: a consensus- based protocol for clock synchronization in wireless sensor networks[J]. Automatica, 2011, 47(9): 1878-1886. doi: 10. 1016/j.automatica.2011.06.012.
[9]
RUGGERO C and SANDRO Z. Network clock synchroni- zation based on the second-order linear consensus algorithm [J]. IEEE Transactions on Automatic Control, 2014, 59(2): 409-422. doi: 10.1109/TAC.2013.2283742.
[10]
HE Jianping, CHENG Peng, SHI Lin, et al. Time synchronization in WSNs: A maximum-value-based consensus approach [J]. IEEE Transactions on Automatic Control, 2014, 59(3): 660-675. doi: 10.1109/TAC.2013.2286893.
[11]
HE Jiangping, LI Hao, CHEN Jiming, et al. Study of consensus-based time synchronization in wireless sensor networks[J]. ISA Transactions, 2014, 53(2): 347-357. doi: 10.1016/j.isatra.2013. 11.001.
[12]
TIAN Yuping, ZONG Siheng, and CAO Qingqing. Structural modeling and convergence analysis of consensus-based time synchronization algorithms over networks: Non-topological conditions[J]. Automatica, 2016, 65: 64-75. doi: 10.1016/j.automatica.2015.11.034.
[13]
ASENSIO M C and BEFERULL L B. Accelerating consensus gossip algorithms: sparsifying networks can be good for you[C]. IEEE International Conference on Communications, Cape Town, South Africa, 2010: 1-5. doi: 10.1109/ICC.2010.5502427.
[14]
VECCHIO M and LÓPEZ-VALCARCE R. A greedy topology design to accelerate consensus in broadcast wireless sensor networks[J]. Information Processing Letters, 2015, 115(3): 408-413. doi: 10.1016/j.ipl.2014.11.009.
REN Fengyuan, DONG Siying, HE Tao, et al. A time synchronization mechanism and algorithm based on phase lock loop[J]. Journal of Software, 2007, 18(2): 372-380. doi: 10.1360/jos180372.
[16]
CARLI R and LOVISARIE E. Robust synchronization of networks of heterogeneous double-integrators[C]. IEEE 51st Annual Conference on Decision and Control (CDC), Grand Wailea, Maui, HI, USA, 2012: 260-265. doi: 10.1109/ CDC.2012.6426768.
[17]
LIN Xiao and STEPHEN Boyd. Fast linear iterations for distributed averaging[J]. Systems & Control Letters, 2003, 5(1): 65-78. doi: 10.1109/CDC.2003.1272421.
[18]
GEORG S S, DIMOS V D, and KARL H J. Event-based broadcasting for multi-agent average consensus[J]. Automatica, 2013, 49(1): 245-252. doi: 10.1016/j.automatica.2012.08.042.