Particle Probability Hypothesis Density Filter Based on Stochastic Perturbation Re-sampling
XU Cong’an① HE You① XIA Shutao① CHENG Juntu② DONG Yunlong①
①(Research Institute of Information Fusion, Naval Aeronautical and Astronautical University, Yantai 264001, China) ②(Unit. 91213 of PLA, Yantai 264000, China)
As a typical implementation of the Probability Hypothesis Density (PHD) filter, Particle PHD (P-PHD) is suitable for highly nonlinear systems and widely used in Multi-Target Tracking (MTT). However, the resampling in P-PHD filter, recommended to avoid particle degeneracy, introduces the problem of diversity loss among the particles, namely particle impoverishment problem. To solve the problem and improve the performance of the P-PHD filter, a novel filter based on stochastic perturbation re-sampling is proposed. First, a comprehensive analysis on the particle impoverishment problem of P-PHD filter is presented. Then for the purpose of keeping the particle diversity, a new stochastic perturbation re-sampling algorithm is developed, which generates new particles according to the position and duplicating times of the original particles, and removes some excessive copied particles. Finally, the re-sampling algorithm is integrated into the P-PHD filter framework and a Stochastic Perturbation Particle PHD (SPP-PHD) filter is proposed. Numerical examples show that the proposed filter can overcome the particle impoverishment problem and improve the estimation performance on the premise of not significantly improving the simulation time.
BAR-SHALOM Y and FORTMANN T E. Tracking and Data Association[M]. Boston: Academic Press, 1988: 32-36.
[2]
BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1): 5-18. doi: 10.1109/MAES. 2004.1263228.
[3]
FORTMANN T E, BAR-SHALOM Y, and SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184. doi: 10.1109/JOE.1983.1145560.
[4]
KALMAN R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME Journal of Basic Enginerring, 1960, 82(2): 95-108.
HE You, XIU Jianjuan, GUAN Xin, et al. Radar Data Processing with Applications[M]. Third Edition. Beijing: Publishing House of Electronics Industry, 2013: 31-35.
[6]
BUCY R S and SENNE K D. Digital synthesis of nonlinear filters[J]. Automatica, 1971, 7(3): 287-298. doi: 10.1016/0005- 1098(71)90121-X.
[7]
CARP J, CLIFFORD P, and FEARN P. Improved particle filter for nonlinear problems[J]. IET Radar, Sonar and Navigation, 1999, 146(1): 1-7. doi: 10.1049/ip-rsn:19990255.
[8]
ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. doi: 10.1109/78.978374.
[9]
SPALL J C. Estimation via markov chain monte carlo[J]. IEEE Control Systems Magazine, 2003, 23(2): 34-45. doi: 10.1109/MCS.2003.1188770.
[10]
FU Xiaoyan and JIA Yingmin. An improvement on resampling algorithm of particle filters[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5414-5420. doi: 10.1109/ TSP.2010.2053031.
ZHAI Dailiang, LEI Humin, LI Haining, et al. Derivation of the probability hypothesis density filter via the physical- space approach[J]. Acta Physica Sinica, 2014, 63(20): 1-6. doi: 10.7498/aps.63.200204.
[16]
VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104. doi: 10.1109/TSP.2006. 881190.
[17]
VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for Bayesian multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245. doi: 10.1109/TAES.2005. 1561884.
[18]
WU Xinhui, HUANG Gaoming, and GAO Jun. Particle filters for probability hypothesis density filter with the presence of unknown measurement noise covariance[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1517-1523. doi: 10.1016/j.cja. 2013.10.007.
XU Cong’an, LIU Yu, XIONG Wei, et al. A dual threshold particle phd filter with unknown target birth intensity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3957-3966. doi: 10.7527/S1000-6893.2015.0104.
[20]
FRANCESCO P and DU Y K. A particle multi-target tracker for superpositional measurements using labeled random Finite sets[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4348-4358. doi: 10.1109/TSP.2015. 2443727.
[21]
YOHAN P, MARK M, FRANCOIS D, et al. Marginalized particle phd filters for multiple object bayesian filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1182-1196. doi: 10.1109/TAES.2014.120805.
[22]
LI Tiancheng, SUN Shudong, SATTAR T P, et al. High-speed Sigma-gating SMC-PHD filter[J]. Signal Processing, 2013, 93(3): 2586-2593. doi: 10.1016/j.sigpro.2013.03.011.
[23]
LI Bo. Multiple-model Rao-blackwellized particle probability hypothesis density filter for multitarget tracking[J]. International Journal of Control, Automation, and Systems, 2015, 13(2): 426-433. doi: 10.1007/s12555-014-0148-7.
[24]
SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457. doi: 10.1109/TSP.2008.920469.