Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice
WANG Xing① ZHOU Yipeng① ZHOU Dongqing① CHEN Zhonghui② TIAN Yuanrong①
①(Institute of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi’an 710038, China) ②(Unit 95357 of PLA, Foshan 528227, China)
A novel recognition algorithm for Low Probability of Intercept (LPI) radar signal based on deep learning of radar signals’ Bispectra Diagonal Slice (BDS) is proposed in this paper. Firstly, a Deep Belief Network (DBN) model is established on stacked Restricted Boltzmann Machines (RBM), then the model is used for layer-by-layer unsupervised greedy learning of radar signals’ BDS. Secondly, a Back Propagation (BP) algorithm is applied to fine tune parameters of DBN model with a supervised way according to learning error. Finally, the BDS-DBN model is constructed to classify and recognize unknown LPI signals. The theoretical analysis and the simulation results show that, the average recognition accuracy of the proposed algorithm for Frequency Modulation Continuous Wave (FMCW), Frank, Costas and FSK/PSK signals can reach 93.4% or ever higher while the SNR is better than 8 dB, which is better than that of Principal Component Analysis-Support Vector Machine (PCA-SVM) algorithm and Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) algorithm.
王星,周一鹏,周东青,陈忠辉,田元荣. 基于深度置信网络和双谱对角切片的低截获概率雷达信号识别[J]. 电子与信息学报, 2016, 38(11): 2972-2976.
WANG Xing, ZHOU Yipeng, ZHOU Dongqing, CHEN Zhonghui, TIAN Yuanrong. Research on Low Probability of Intercept Radar Signal Recognition Using Deep Belief Network and Bispectra Diagonal Slice. JEIT, 2016, 38(11): 2972-2976.
PHILLIP E P. Detecting and Classing Low Probability of Intercept Radar (Second Edition)[M]. Norwood, MA, USA, Artech House, 2009: 1-15.
[2]
LIU Y J, XIAO P, WU H C, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981. doi: 10.1109/JSEE.2015.00106.
LI Na, WANG Ke, and LI Baozhu. Optimization and application of LPI radar signal detection method[J]. Optics and Precision Engineering, 2014, 22(11): 3122-3128. doi: 10.3788/OPE. 20142211.3122.
CAI Zhongwei and LI Jiandong. Study of transmitter individual identification based on bispectra[J]. Journal on Communications, 2006, 28(2): 75-79. doi: 10.3321/j.issn: 1000-436x.2007.02.012.
WANG Shiqiang, ZHANG Dengfu, BI Duyan, et al. Research on recognizing the radar signal using the bispectrum cascade feature[J]. Journal of Xidian University, 2012, 39(2): 127-132. doi: 10.3969/j.issn.1001-2400.2012.02.021.
XU Shuhua, HUANG Benxiong, and XU Lina. Identification of individual radio transmitters using SIB/PCA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(7): 14-17. doi: 10.3321/j.issn:1671- 4512.2008.07.004.
HU Zhen, FU Kun, and ZHANG Changshui. Audio classical composer identification by deep neural network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. doi: 10.7544/issn.1000-1239.2014.20140189.
[8]
SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2014, 61: 85-117. doi: 10.1016/ j.neunet.2014.09.003.
YIN Baocai, WANG Wentong, and WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. doi: 10.11936/bjutxb2014100026.
[10]
HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.doi: 10.1162/neco.2006.18.7.1527.
[11]
SARIKAYA R, HINTON G E, and DEORAS A. Application of deep belief networks for natural language understanding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 778-784. doi: 10.1109/TASLP. 2014.2303296.
[12]
HINTON G, LI D, DONG Y, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597.
[13]
TABOADA and FERNANDO L. Detection and classification of low probability of intercept radar signals using parallel filter arrays and higher order statistics[D]. [Ph.D. dissertation], Naval Postgraduate School, 2002.
ZHANG Xu. Wireless devices “fingerprint” feature extraction based on signal analysis[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2014: 13-14.